

MONITORING YEAR 3 ANNUAL REPORT

Final

MOORES FORK STREAM MITIGATION PROJECT

Surry County, NC
DEQ Contract 6500
DMS Project Number 94709
DWR # 12-0396
USACE Action ID SAW-2011-02257

Data Collection Period: April-October 2018 Submission Date: December 5, 2018

PREPARED FOR:

NC Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652

PREPARED BY:

Wildlands Engineering, Inc.

1430 South Mint Street, Suite 104 Charlotte, NC 28203 Phone: 704.332.7754 Fax: 704.332.3306

December 5, 2018

Mr. Matthew Reid Western Project Manager Division of Mitigation Services 5 Ravenscroft Dr., Suite 102 Asheville, NC 28801

RE: Moores Fork Stream Mitigation Project

Yadkin River Basin – CU# 03040101 Surry County, North Carolina NCEEP Project # 94709 Contract No. 6500

Dear Mr. Reid:

Wildlands Engineering, Inc. (Wildlands) has reviewed the Division of Mitigation Services (DMS) comments from the Draft Monitoring Year 3 report for the Moores Fork Stream Mitigation Project. The following Wildlands responses to DMS's report comments are noted in italics lettering.

DMS comment; Two overhead lines were identified on a recent site visit. One crosses Corn Trib, and the other crosses Moores Fork. Please see the attached asbuilt sheets for locations. Please assume 20' utility easement and reduce credit in these sections by 50%. A brief discussion can be added in Section 1: Project Overview. Please update references to mitigation asset totals in the report with the revised number as necessary.

Wildlands response; Text was added to the second paragraph in Section 1 of the report to describe the reduction of 10.4 Stream Mitigation Units (SMUs) on Moores Fork and 4.1 SMUs on Corn Trib because of the 20' overhead powerline easement.

DMS comment; 1.2.2 Vegetation Areas of Concern: DMS has hired a contractor to treat invasives at the site. The contractor has treated the site multiple times this summer and fall: July 5-6, July 10-12, August 24 and 27, September 3 and 5, and November 28-30. The contractor will continue to work on the site to eradicate the invasives.

Wildlands response; Text in Section 1.2.2 has been added to indicate that invasive species treatment occurred in the summer and fall.

DMS comment; Table 1: Please update table after determining utility crossing losses.

Wildlands response; Table 1 was updated with the reductions from the utility crossings on Moores Fork and Corn Trib for a total of 11,588 SMUs.

DMS comment; Table 2: Please add Invasive Species Treatment to table for MY3 (Jul, Aug, Sep and Nov 2018).

Wildlands response; Invasive Species Treatment dates for MY3 were added to Table 2.

DMS comment; CCPV: Thanks for providing updated invasive species polygons. Please continue to update as treatment occurs and populations are reduced. This map is a useful tool for the contractor treating the site.

Wildlands response; Wildlands will continue to update the CCPV figures as treatment of invasive species occurs and populations are reduced.

DMS comment; CCPV: Please update map with the two additional utility lines.

Wildlands response; The CCPV figures have been updated with the additional utility lines crossing on Moores Fork and Corn Trib.

DMS comment; DMS made a site visit on November 26, 2018. We are exploring the possibility of remedial action to some areas depicted on the CCPV as being problem areas. DMS will coordinate with Wildlands when final decisions have been made.

Wildlands response; Thank you for this information. Wildlands will look for communication from DMS about possible remedial action to some areas of concern depicted on the CCPV.

DMS comment; Cross-sections: Please turn off markers for all years except MY3.

Wildlands response; All markers have been turned off except for MY3 on cross-section plots.

DMS comment; Please add the attached treatment logs to an Appendix F.

Wildlands response; Invasive species treatment logs were added to an Appendix F.

Enclosed please find three (3) hard copies and one (1) electronic copy on CD of the Final Monitoring Report. Please contact me at 704-332-7754 x110 if you have any questions.

Sincerely,

Kirsten Y. Gimbert Project Manager

kgimbert@wildlandseng.com

Kirsten y. Stembert

EXECUTIVE SUMMARY

The North Carolina Department of Environmental Quality (NCDEQ) Division of Mitigation Services (DMS) restored, enhanced, and preserved approximately 19,587 linear feet (LF) of Moores Fork and 13 unnamed tributaries (UTs), provided livestock fencing and alternative water sources to keep livestock out of the streams, removed invasive plant species across the project, and established native riparian buffers. The restoration project was developed to fulfill stream mitigation requirements accepted by the DMS for the Upper Yadkin River Basin (HUC 03040101). The Moores Fork Stream Mitigation Project (the Site) will net 11,588 stream mitigation units through a combination of restoration, enhancement I and II, and preservation.

The Site is within a Targeted Local Watershed (TLW) identified in the Upper Yadkin River Basin Restoration Priority (RBRP) plan (NCDENR, 2009). The RBRP identified the Stewarts Creek 14-digit HUC 03040101100010 as a TLW. Agriculture is the primary land use in the watershed (36% agriculture land cover and only 3% impervious cover) and the RBRP identified degraded riparian buffers as the major stressor to water quality. The Site is also located within the identified as a priority subwatershed for stream restoration and agricultural BMPs during the initial Upper Yadkin-Ararat River local watershed planning (LWP).

The final design was completed in June of 2013. Construction activities and as-built surveys were completed in December of 2014. Planting of the site took place in February of 2015. A large flood event with an estimated return interval of 50 to 100 years occurred at the site on April 18-19, 2015, causing damage to the main stem of Moores Fork. This damage was repaired in March and April of 2016, and a second as-built survey was performed on the repaired areas in April of 2016. The baseline monitoring efforts began in June of 2016 and monitoring year one efforts were initiated in late October of 2016. The Monitoring Year 3 (MY3) monitoring activities were completed in October 2018.

The Site is on track to meet MY3 success criteria for vegetation, geomorphology, and hydrology performance standards. The MY3 vegetation survey resulted in an average stem density of 458 planted stems per acre. The Site has met the interim requirement of 320 planted stems per acre, with 9 of the 12 plots (75%) individually meeting this requirement. The MY3 vegetation monitoring and visual assessment revealed invasive plant populations have responded to treatment that occurred in Summer and Fall of 2018. Morphological surveys indicate that the channel dimensions are stable and functioning as designed with minor deviation from the as-built baseline dimensions. A few instances of localized bank erosion and structure instability are present on the Site. At least one bankfull event occurred during MY3 and was recorded by the Moores Fork crest gage and debris indicators were observed on Silage Tributary. The performance standard of two recorded bankfull events in separate monitoring years has been met for both Moores Fork and Silage Tributary.

i

MOORES FORK STREAM MITIGATION PROJECT

Year 3 Monitoring Report

T	A				-			10		B. I	-		_
- 1 /	Δ	к	ь.) b	- 1		ш	M I	 -	N	4 1	ľ	۰,

Section 1:	PROJECT OVERVIEW	1-1
1.1 P	Project Goals and Objectives	1-1
1.2 N	Monitoring Year 3 Data Assessment	
1.2.1	Vegetation Assessment	1-2
1.2.2	Vegetation Areas of Concern	1-3
1.2.3	Stream Assessment	1-3
1.2.4		
1.2.5	Hydrology Assessment	
1.3 N	Monitoring Year 3 Summary	
Section 2:	METHODOLOGY	2-1
Section 3:	REFERENCES	3-1
APPENDIC	ES	
Appendix A	-	
Figure 1	Project Vicinity Map	
Figure 2	Project Component/Asset Map	
Table 1	Project Components and Mitigation Credits	
Table 2	Project Activity and Reporting History	
Table 3	Project Contact Table	
Table 4a-b	,	
Table 5	Monitoring Component Summary	
Appendix I	B Visual Assessment Data	
Figure 3.0-	3.6 Integrated Current Condition Plan View	
Table 6a-j	Visual Stream Morphology Stability Assessment Table	
Table 7	Vegetation Condition Assessment Table	
	Stream Photographs	
	Vegetation Photographs	
Appendix (C Vegetation Plot Data	
Table 8	Vegetation Plot Criteria Attainment	
Table 9	CVS Vegetation Plot Metadata	
Table 10	Planted and Total Stem Counts (Species by Plot with Annual Means)	
Appendix I	D Morphological Summary Data and Plots	
Table 11a-l		
Table 12a-l	b Morphology and Hydraulic Summary (Dimensional Parameters – Cross-Section	on)
	Cross-Section Plots	
	Cross-Section Pebble Count Plots	
Appendix I	E Hydrology Summary Data and Plots	
Table 13	Verification of Bankfull Events	
	Monthly Rainfall Data	
Appendix I	·	
Appendix r	r invasive species freatment logs	

Section 1: PROJECT OVERVIEW

The Site was implemented under a design-bid-build contract with DMS in Surry County, NC. The Site is located in the Yadkin River Basin; eight-digit Cataloging Unit (CU) 03040101 and the 14-digit Hydrologic Unit Code (HUC) 03040101100010 (Figure 1). Located in the Piedmont physiographic province (NCGS 2004), the project watershed primarily includes agricultural land cover. The drainage area for the lower end of Moores Fork is 1,527 acres and the drainage area for Silage Tributary is 156 acres. The site is located approximately 0.25 mile north of NC 89 on Horton Road. The project site is located on both sides of Horton Road. Latitude and longitude for the site are 36.506671 N and -80.704115 W, respectively (Figure 1).

The NCDEQ Division of Mitigation Services (DMS) restored, enhanced, and preserved approximately 19,587 linear feet (LF) of Moores Fork and 13 unnamed tributaries (UTs), provided livestock fencing and alternative water sources to keep livestock out of the streams, removed invasive plant species across the project, and established native riparian buffers. The restoration project was developed to fulfill stream mitigation requirements accepted by the DMS for the Upper Yadkin River Basin (HUC 03040101). Mitigation work within the Site included restoring and enhancing 15,308 LF and preserving 4,279 LF of stream. The Moores Fork Stream Restoration Project will net 11,588 stream mitigation units (SMUs) through a combination of restoration, enhancement I and II, and preservation. Due to overhead utility easements that cross project streams, 7.8 SMUs were removed on Silage Tributary Reach 2 (starting at STA 30+10.49 and ending at STA 30+33.95), 10.4 SMUs were removed on Moores Fork (starting at STA 37+22.01 and ending at STA 37+42.79), and 4.1 SMUs were removed on Corn Trib (starting at STA 19+38.58 and ending at STA 19+59.15) as shown in Table 1 of Appendix A.

The final design was completed in June of 2013. Construction activities and as-built surveys were completed in December of 2014. Planting of the site took place in March of 2015. A large flood event with an estimated return interval of 50 to 100 years occurred at the site on April 18-19, 2015, causing damage to the main stem of Moores Fork. This damage was repaired in March and April of 2016, and a second as-built survey was performed on the repaired areas in April of 2016. The baseline monitoring efforts began in June of 2016 and monitoring year one efforts were initiated in late October of 2016. The Monitoring Year 3 monitoring activities were completed in October 2018. More detailed information related to the project activity, history, and contacts can be found in Appendix A, Tables 1 and 2. Directions and a map of the Site are provided in Figure 1 and project components are illustrated for the Site in Figure 2. Please refer to the Project Component Map (Figure 2) for the stream features and to Table 1 for the project component and mitigation credit information for the Site. This report documents the results of the monitoring year three efforts (MY3).

1.1 Project Goals and Objectives

Prior to construction activities, dairy and farming operations on the site had deforested riparian buffers and allowed direct livestock access to the stream, leading to elevated temperatures and nutrients. Channel straightening and dredging throughout much of the project had also contributed to channel degradation. Table 11 in Appendix D present the pre-restoration conditions in detail.

This mitigation site is intended to provide numerous ecological benefits within the Yadkin River Basin. The project goals identified in the Mitigation Plan (Confluence, 2012) include:

- Improve water quality in Moores Fork and the UTs through reductions in sediment and nutrient inputs from local sources;
- Create conditions for dynamic equilibrium of water and sediment movement between the supply reaches and project reaches;

- Promote floodwater attenuation and secondary functions associated with more frequent and extensive floodwater contact times;
- Improve in-stream habitat by increasing the diversity of bedform features;
- Enhance and protect native riparian vegetation communities; and
- Reduce fecal, nutrient, and sediment loads to project streams by promoting and implementing livestock best management practices.

The project objectives have been defined as follows:

- Restoration of the dimension, pattern, profile of approximately 1,828 LF of Moores Fork Reach 2 and 243 LF of the Pond Tributary;
- Restoration of the dimension and profile (Enhancement I) of the channel for approximately 2,832 LF of Moores Fork Reach 3, 900 LF of Silage Reach 1, 2,448 LF of Silage Reach 2, 300 LF of Barn Reach 1 and 112 LF of Corn Reach 2;
- Limited channel work coupled with livestock exclusion, gully stabilization, invasive species
 control and buffer planting (Enhancement II) on approximately 761 LF of Moores Fork Reach 1,
 167 LF of Cow Tributary 1,767 LF of Cow Tributary 2, 3,134 LF of Barn Reach 2, 1,350 LF of Corn
 Reach 1, and 466 LF of UT1;
- Livestock exclusion fencing and other best management practice installations;
- Invasive plant species control measures across the entire project wherever necessary; and
- Preservation of approximately 4,279 LF of relatively un-impacted forested streams (UTs 2, 3, 6, 7, 8, 9, 10) in a permanent conservation easement.

1.2 Monitoring Year 3 Data Assessment

Annual monitoring was conducted during MY3 (April to October 2018) to assess the condition of the project. The stream restoration success criteria for the Site follows the approved performance standards presented in the Moores Fork Stream Mitigation Project Final Mitigation Plan (Confluence, 2012). Annual monitoring will be conducted for seven years to provide a project data chronology that will facilitate an understanding of project status and trends.

1.2.1 Vegetation Assessment

A total of 12 vegetation monitoring plots were established during the baseline monitoring within the project easement areas using a standard 10 by 10 meter plot. Please refer to Figure 3 in Appendix B for the vegetation monitoring locations. At the end of year five of the monitoring period, the vegetation success criterion is the survival of 260 planted stems per acre in the riparian corridor along restored and enhanced reaches. The final vegetation success criterion is the survival of 210 planted stems per acre at the end of year seven of the monitoring period. The interim measure of vegetation success for the Site is the survival of at least 320 planted stems per acre at the end of year three of the monitoring period.

The MY3 vegetation survey was completed in August 2018, resulting in an average stem density of 458 planted stems per acre. The Site has met the interim requirement of 320 stems per acre, with 9 of the 12 plots (75%) individually meeting this requirement. Vegetation plots 2 and 8, both having densities of 283 stems per acre, did not meet the interim success criteria. However, they still meet the MY5 density requirements of 260 planted stems per acre. Vegetation plot 3, with 242 stems per acre, still meets the MY7 density requirement of 210 stems per acre. The planted stem mortality was approximately 3% of the MY2 stem count which was 472 stems per acre. There is an average of 11 stems per plot. Approximately 2.1% of the planted stems scored a vigor of 1, indicating that they are unlikely to survive. This low vigor rating is due to damage from storm events, suffocation from dense herbaceous cover,

insects, vine strangulation, deer herbivory, or other unknown factors. Please refer to Appendix B for vegetation plot photographs and Appendix C for vegetation data tables.

1.2.2 Vegetation Areas of Concern

Several vegetation problem areas of invasive plant populations were identified in MY3 throughout the Site. Species included: kudzu (*Pueraria montana*), Chinese privet (*Ligustrum sinense*), Japanese honeysuckle (*Lonicera japonica*), Multiflora rose (*Rosa multiflora*), Winter Creeper (*Euonymus fortunei*), Oriental Bittersweet (*Celastrus orbiculatus*), and Japanese stilt grass (*Microstegium vimineum*). The supplemental treatment of invasive species that occurred in the Summer and Fall of 2018 significantly reduced areas of Chinese privet, multiflora rose, and kudzu. Along the floodplain of Moores Fork Reach 3, areas of Kudzu and Chinese privet persist after the treatment. Many planted stems continue to be damaged from vine strangulation along Barn Tributary Reach 1. DMS has hired a contractor to treat invasives at the Site. The contractor treated the Site multiple times this summer and fall: July 5-6, July 10-12, August 24 and 27, September 3 and 5, and November 28-30. The contractor will continue to work on the Site to eradicate the invasives species. Areas of invasive species that persist throughout the conservation easement are indicated on Figure 3 in Appendix B.

The site has a strong herbaceous cover consisting of various species of clover, rye grass, fescue, and sedge. Isolated bare/poorly vegetated areas that were observed in MY2 have herbaceous cover that is becoming established in MY3. These vegetation areas of concern are shown in Figure 3 in Appendix B.

1.2.3 Stream Assessment

Morphological surveys for MY3 were conducted in June 2018. In general, MY3 riffle pebble counts in Moores Fork indicate coarser sediment size distribution as compared to MY0. Cross-section data indicate that channel dimensions for Moores Fork have changed very little since the April 2016 baseline data was collected. Riffle width to depth ratios have changed only modestly, and pool depths are being maintained close to baseline depths. At Moores Fork riffle cross-section 2, the width to depth ratio has increased compared to MY0 but appears stable. At Moores Fork pool cross-section 6, an increase in bankfull cross-sectional area was observed in MY2 where a boulder of a stone toe structure has been undermined on the outer bend of the channel. Additional scour behind the structure at this bend was observed in MY3.

Along Silage Tributary, MY3 riffle pebble counts indicate similar or coarser sediment size distribution as compared to MY0. Silage Tributary Reach 1 MY3 indicates somewhat larger deviations from the baseline in part due to the small channel dimensions. On Silage Tributary riffle cross-section 1, scour along the right bank has caused an increase in bankfull bank height ratio. Similarly on Silage Tributary riffle cross-sections 3 and 6, the survey data indicates some channel bed scour due to concentrated flow against a small bar that has formed, resulting in a decrease in width to depth ratios as compared to MY0. For the remaining cross-sections, results indicate that channel dimensions are stable and functioning well. Please refer to Appendix D for cross-section plots and morphological summary tables.

1.2.4 Stream Areas of Concern

Stream areas of concern include instances of bank erosion and sediment deposition. In MY3, a significant area of erosion was observed on the left bank of Moores Fork Reach 2 near STA 35+60. Moores Fork Reach 3 continues to have localized areas of bank erosion near STA 49+00 and just upstream of the confluence of UT8 (STA 44+50). Three structures have been undermined including a log vane structure at STA 41+10, a stone toe boulder at STA 47+50, and root wads at STA 44+50. Additionally, headcuts are visible at both the UT8 and UT10 wetland confluences located along Moores Fork Reach 3. Silage Tributary Reach 2 has new or expanded bank erosion (STA 22+30, 30+30, 31+20, and 34+50). Several structures along Silage Tributary Reach 1 and 2 have been undermined including log

structures at STA 15+80, 18+20, 26+90, 31+90, 33+10 and a boulder step footer at STA 35+20. These areas will continue to be monitored in future years for signs of accelerated instability. Stream areas of concern are indicated in Table 6 and Figure 3 in Appendix B.

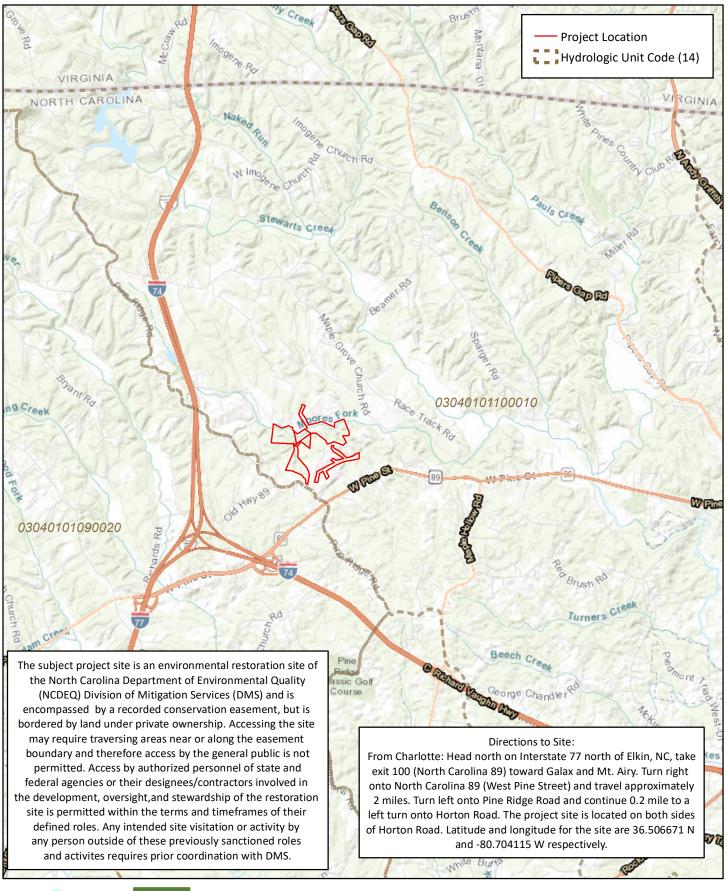
1.2.5 Hydrology Assessment

Bankfull data collected from Moores Fork Reach 2 and the Silage Tributary Reach 2 on April 12, 2018 indicate that a bankfull event occurred. A crest gage bankfull measurement was documented for Moores Fork and debris wracklines on the floodplain was evident for the Silage Tributary. NCCRONOS daily rainfall data suggest that the bankfull event may have occurred around March 25, 2018. Two bankfull flow events must be documented on restoration reaches within the seven-year monitoring period and must occur in separate years. Therefore, the performance standard has been met for the Site in MY3. Refer to Appendix E for hydrologic data and graphs.

1.3 Monitoring Year 3 Summary

The Site is on track to meet monitoring success criteria for MY7 vegetation, geomorphology, and hydrology performance standards. The MY3 vegetation survey resulted in an average stem density of 458 planted stems per acre. The Site has met the interim requirement of 320 planted stems per acre, with 9 of the 12 plots (75%) individually meeting this requirement. The MY3 vegetation monitoring and visual assessment revealed invasive plant populations have responded to treatment that occurred in Spring 2018. Morphological surveys indicate that the channel dimensions are stable and functioning as designed with minor deviation from the as-built baseline dimensions. A few instances of localized bank erosion and structure instability are present on the Site. At least one bankfull event occurred during MY3 and was recorded by the Moores Fork crest gage and debris indicators were observed on Silage Tributary. The performance standard of two recorded bankfull events in separate monitoring years has been met for both Moores Fork and Silage Tributary.

Summary information and data related to the performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these annual monitoring reports can be found in the Mitigation Plan documents available on DMS's website. All raw data supporting the tables and figures in the appendices are available from DMS upon request.


Section 2: METHODOLOGY

Geomorphic data were collected following the standards outlined in The Stream Channel Reference Site: An Illustrated Guide to Field Techniques (Harrelson et al., 1994) and in the Stream Restoration: A Natural Channel Design Handbook (Doll et al., 2003). All Integrated Current Condition Mapping was recorded using a Trimble handheld GPS with sub-meter accuracy and processed using Pathfinder and ArcGIS. Planted woody vegetation is being monitored in accordance with the guidelines and procedures developed by the Carolina Vegetation Survey-EEP Level 2 Protocol (Lee et al., 2008). Crest gages were installed in surveyed riffle cross-sections and monitored quarterly.

Section 3: REFERENCES

- Confluence Engineering, PC. 2012. Moores Fork Stream Mitigation Plan. NCEEP, Raleigh, NC.
- Doll, B.A., Grabow, G.L., Hall, K.A., Halley, J., Harman, W.A., Jennings, G.D., and Wise, D.E. 2003. Stream Restoration A Natural Channel Design Handbook.
- Harrelson, Cheryl C; Rawlins, C.L.; Potyondy, John P. 1994. *Stream Channel Reference Sites: An Illustrated Guide to Field Technique*. Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 61 p.
- Lee, Michael T., Peet, Robert K., Steven D., Wentworth, Thomas R. 2008. CVS-EEP Protocol for Recording Vegetation Version 4.2. Retrieved from: http://cvs.bio.unc.edu/protocol/cvs-eep-protocol-v4.2-lev1-2.pdf
- North Carolina Climate Retrieval and Observations Network of the Southeast Database (NCCRONOS). 2016. State Climate Office of North Carolina. Version 2.7.2. MT Airy 2 W. Station ID No. 315890. Accessed October 2017.
- North Carolina Division of Water Resources (NCDWR). 2016. Surface Water Classifications. Retrieved from http://deq.nc.gov/about/divisions/water-resources/planning/classification-standards/classifications
- NCDENR. 2009. Upper Yadkin River Basin Restoration Priorities. Retrieved from https://deq.nc.gov/about/divisions/mitigation-services/dms-planning/watershed-planning-documents/yadkin-river-basin
- North Carolina Geological Survey (NCGS). 2004. Physiography of North Carolina. Map compiled by the Division of Land Resources. Raleigh.
- Rosgen, D.L. 1996. Applied River Morphology. Pagosa Springs, CO: Wildland Hydrology Books.
- United States Army Corps of Engineers (USACE), 2003. Stream Mitigation Guidelines. USACE, NCDENR-DWQ, USEPA, NCWRC.
- United States Geological Survey (USGS), 1998. North Carolina Geology. https://deq.nc.gov/about/divisions/energy-mineral-land-resources/north-carolina-geological-survey/

0 0.5 1 Mile

Figure 1 Project Vicinity Map Moores Fork Stream Mitigation Site DMS Project No. 94709 Monitoring Year 3 - 2018

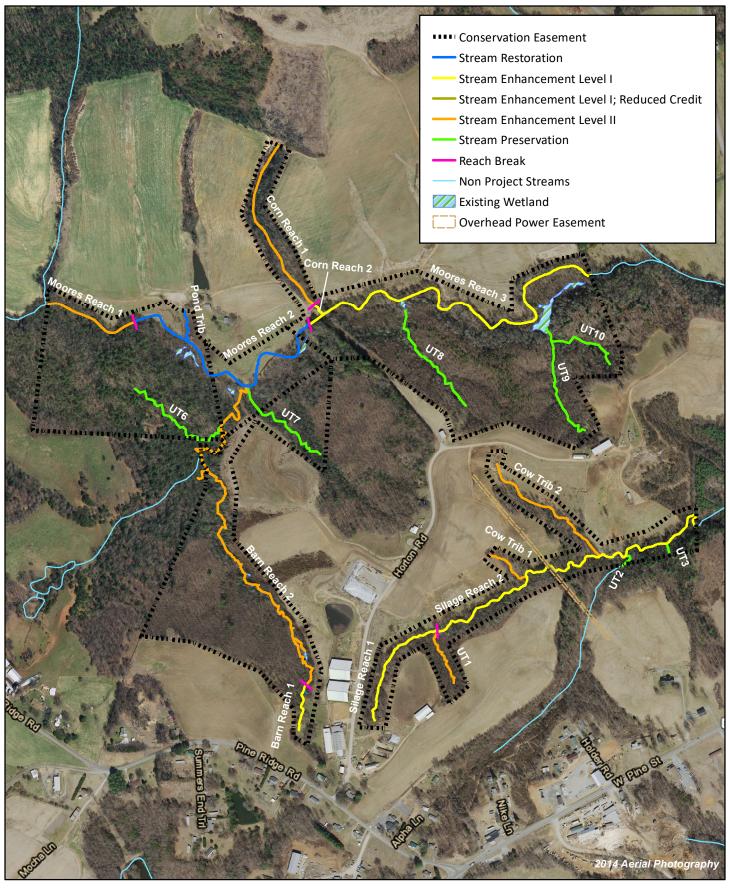


Table 1. Project Components and Mitigation Credits

Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 3 - 2018

	Mitigation Credit Summaries ¹											
Туре	Restoration	Enhancement I	Enhancement II	Preservation								
Total	2071.000	5757.790	2902.953	855.800								

			Proje	ct Components ¹				
Project Component or Reach ID	Stationing	Pre-project Footage or Acreage	Restoration Footage or Acreage	Restoration Level	Restoration or Rest Equiv.	Mitigation Ratio	Mitigation Credits	Notes
Moores Reach 1	STA 989-1750	761	761	N/A	EII	2.5:1	304.400	-
Moores Reach 2	STA 1750-3578	1,636	1,828	P2	R	1:1	1,828.000	-
Moores Reach 3	STA 3578-6410	2,856	2,832	P2/3	EI	1:1	2,821.610	Reduction in 10.39 SMU because of 20' overhead powerline easement
Silage Reach 1	STA 1000-1900	900	900	P1	EI	1:1	900.000	-
Silage Reach 2	STA 1900-4348	2,448	2,448	P3	EI	1.5:1	1,624.180	Reduction in 7.82 SMU because of 20' overhead powerline easement.
Cow Trib 1	STA 1219-1386	167	167	P4	EII	1.5:1	111.333	-
Cow Trib 2	STA 1331-2098	767	767	P4	EII	1.5:1	511.333	-
Pond Trib	STA 1000-1243	194	243	P2	R	1:1	243.000	-
Barn Reach 1	STA 1000-1300	300	300	P3	EI	1:1	300.000	-
Barn Reach 2	STA 1350-3746; STA 4069-4757	3,134	3,134	N/A	EII	2.5:1	1,253.600	-
								Reduction in 4.114 SMU because of 20'
Corn Reach 1	STA 1000-2350	1,350	1,350	N/A	EII	2.5:1	535.886	overhead powerline
Corn Reach 2	STA 2350-2462	112	112	P3	EI	1:1	112.000	-
UT1	STA 1000-1466	466	466	N/A	EII	2.5:1	186.400	-
Preservation Reaches	UTs 2,3,6,7,8,9,10	4,279	4,279	N/A	Р	5:1	855.800	-

			Length ar	nd Area Summatio	ns [†]			
Restoration Level	Stream (Linear Feet)	Riparian Wetland (acres)		Non-riparian Wetland (acres)	Buffer (Squ	uare feet)		Upland (acres)
		Riverine	Non-Riverine					
		-						
Restoration	2,071	•	=	-	-	-	-	-
Enhancement		•	=	-	-	-	-	-
Enhancement I	6,592							
Enhancement II	6,645							
Creation		•	=	-			-	-
Preservation	4,279	-	-	-			-	-
High Quality Preservation	-	-	-	-			-	-
riigii Quality Preservation	-	•	-	-			-	-

N/A - Not Applicable

¹Project components and mitigation credits reverted back to Mitigation Plan totals as requested by IRT.

Table 2. Project Activity and Reporting HistoryMoores Fork Stream Mitigation Project
DMS Project No. 94709 Monitoring Year 3 - 2018

Activity or Deliv	erable	Data Collection Complete	Completion or Delivery
Mitigation Plan		December-2011	November-2012
Final Design – Construction Plans		N/A	June-2013
Construction (Repairs)		N/A	December-2014 (April-2016)
Temporary S&E Mix Applied		N/A	December-2014 (April-2016)
Permanent Seed Mix Applied		N/A	December-2014 (April-2016)
Containerized, Bare Root and B&B Planting	gs For Reach/Segments	N/A	February-2015 (April-2016)
Invasive Species Treatment		May-2016	May-2016
Baseline Monitoring Document (Year 0)	Vegetation Survey	June-2016	August-2016
baseline Monitoring Document (rear o)	Stream Survey	June-2016	August-2010
Invasive Species Treatment		September-2016	September-2016
Year 1 Monitoring	Vegetation Survey	October-2016	November-2016
real 1 Monitoring	Stream Survey	November-2016	November-2016
Year 2 Monitoring	Vegetation Survey	August-2017	November-2017
Teal 2 Monitoring	Stream Survey	June 2017 - July 2017	November-2017
Invasive Species Treatment		July, Aug, Sept & Nov 2018	November-2018
Year 3 Monitoring	Vegetation Survey	August-2018	November-2018
Teal 3 Worldoning	Stream Survey	June-2018	NOVEITIBET-2018
Year 4 Monitoring	Vegetation Survey	2019	November-2019
real 4 Monitoring	Stream Survey	2019	November-2019
Year 5 Monitoring	Vegetation Survey	2020	November-2020
Teal 5 Wiolitoning	Stream Survey	2020	14046111561-2020
Year 6 Monitoring	Vegetation Survey	2021	November-2021
Tear o Monitoring	Stream Survey	2021	NOVEITIBET-2021
Year 7 Monitoring	Vegetation Survey	2022	November-2022
Teal / Worldoning	Stream Survey	2022	NOVEITIBET-2022

N/A - Not Applicable

Table 3. Project Contacts Table

Moores Fork Stream Mitigation Project DMS Project No. 94709

Monitoring Year 3 - 2018

Designer	Wildlands Engineering, Inc.
	167-B Haywood Road
	Asheville, NC 28806
Primary project design POC	Andrew Bick 828-606-0306
Construction Contractor	Carolina Environmental Contracting, Inc.
	150 Pine Ridge Road
	Mount Airy, NC 27030
Construction contractor POC	Wayne Taylor 336-341-6489
Survey Contractor	Turner Land Surveying, PLLC
	PO Box 41023
	Raleigh, NC 27629
Survey Contractor POC	David Turner 919-623-5095
Planting Contractor	Keller Environmental, LLC
	7921 Haymarket Lane
	Raleigh, NC 27615
Planting Contractor POC	Jay Keller 919-749-8259
Seeding Contractor	Carolina Environmental Contracting, Inc.
	150 Pine Ridge Road
	Mount Airy, NC 27030
Seeding Contractor POC	Wayne Taylor 336-341-6489
Seed Mix Sources	Green Resources 336-855-6363
Nursery Stock Suppliers	Foggy Mountain Nursery 336-384-5323
Monitoring Performers	Wildlands Engineering, Inc.
	1430 South Mint Street, Ste 104
	Charlotte, NC 28205
	704.332.7754
Stream Monitoring POC	Kirsten Gimbert 704-332-7754, ext 110
Vegetation Monitoring POC	Kirsten Gimbert 704-332-7754, ext 110

Table 4a. Project Baseline Information and Attributes

Moores Fork Stream Mitigation Project

DMS Project No. 94709

Monitoring Year 3 - 2018

	Projec	t Info	ormation							
Project Name	Moores Fork Stream Mitigation	Projec	ct							
County	Surry									
Project Area (acres)	~140									
Project Coordinates (latitude and longitude)	36.506671 N, 80.704115 W									
	Project Watershe	d Su	mmary Informa	ation						
Physiographic Province	Piedmont									
River Basin	Yadkin									
USGS Hydrologic Unit 8-digit	03040101									
USGS Hydrologic Unit 14-digit	03040101100010									
DWR Sub-basin	Pee Dee River Subbasin 03-07-02									
Project Drainage Area (acres)	1,527 ac (2.39 mi ²)									
Project Drainage Area Percentage of Impervious Area	<5%									
CGIA Land Use Classification	Cropland and Pasture, Confined	l Anima	al Operations							
	Reach Sum	mary	y Information							
Parameters	Moores Fork Reach 1 & 2	Mod	ores Fork Reach 3	Sil	age	Co	w Trib 1	Cow Trib 2		
Length of Reach Post Construction (LF)	2,636		2,885	3,3	348		167	767		
Valley classification (Rosgen)	VIII		VIII	II,	/IV		II	II		
Drainage area (acres)	1,193		1,527	1	56		4	16		
NCDWQ stream identification score	35		34.5	23	3.5		20	23.5		
NCDWQ Water Quality Classification	WS-IV		WS-IV	WS	S-IV		WS-IV	WS-IV		
Morphological Description (Rosgen stream type)	C4		C4	G4	/C4		G5	G5		
Evolutionary trend	C-F		C-F	G	-F		G	G		
Underlying mapped soils	CsA, FsE	CsA, FsE FeD			D2		FeD2	FeD2		
Drainage class	well drained	well drained v		well d	rained	we	ll drained	well drained		
Soil Hydric status	not hydric	not hydric			nydric		t hydric	not hydric		
Slope	0.008	0.006			030		0.056	0.038		
FEMA classification	Not in SFHA		Not in SFHA		n SFHA		t in SFHA	Not in SFHA		
Native vegetation community	Felsic Mesic Forest	Fel	lsic Mesic Forest		sic Forest	Felsic	Mesic Forest	Felsic Mesic Forest		
Percent composition of exotic invasive vegetation	0 Wetland Sur	mmai	ry Information		0		0	0		
Paramatana		IIIIIa		_						
Parameters	Wetland 1 0.49		Wetland 0.04	2	V	Vetland 0.08	3	Wetland 4 0.15		
Size of Wetland (acres)	0.43					0.00		0.13		
Wetland Type	riparian non-riverine		riparian non-ri	riparian non-riverine		an non-ri	verine	riparian non-riverine		
Mapped Soil Series	FsE		FsE			CsA		FsE & CsA		
Drainage class	well drained		well drain	ed	w	ell draine	ed	well drained		
Soil Hydric Status	not hydric]	not hydri	с	r	not hydri	с	not hydric		
Source of Hydrology	UT9 & UT10		UT8			Toe seep	,	Toe seep		
Hydrologic Impairment	none		none			none		none		
Native vegetation community	Dist. Small Stream/		Dist. Small Str	eam/	Dist.	Small Str	eam/	Dist. Small Stream/		
Native vegetation community	Narrow FP Forest		Narrow FP Fo	orest	Narı	row FP Fo	orest	Narrow FP Forest		
Percent composition of exotic invasive vegetation	0		0			0		0		
	Regulator	у Соі	nsiderations							
Regulation			Applicabl	e?	Resolve	ed?	Suppo	rting Documentation		
Waters of the United States – Section 404			Y		Y		USACE I	D No. SAW-2011-02257		
Waters of the United States – Section 401			Υ		Υ		N	ICDWR # 12-0396		
Endangered Species Act		Υ		Y		CE /	Approved 12/21/11			
Historic Preservation Act			N N		N/A		-			
	Coastal Zone Management Act (CZMA)/ Coastal Area Management Act (CAMA)			N N		N/A		-		
FEMA Floodplain Compliance			N							
				N/A			¥			
Essential Fisheries Habitat		N	N/A		-					

N/A Not-applicable

Table 4b. Project Baseline Information and Attributes

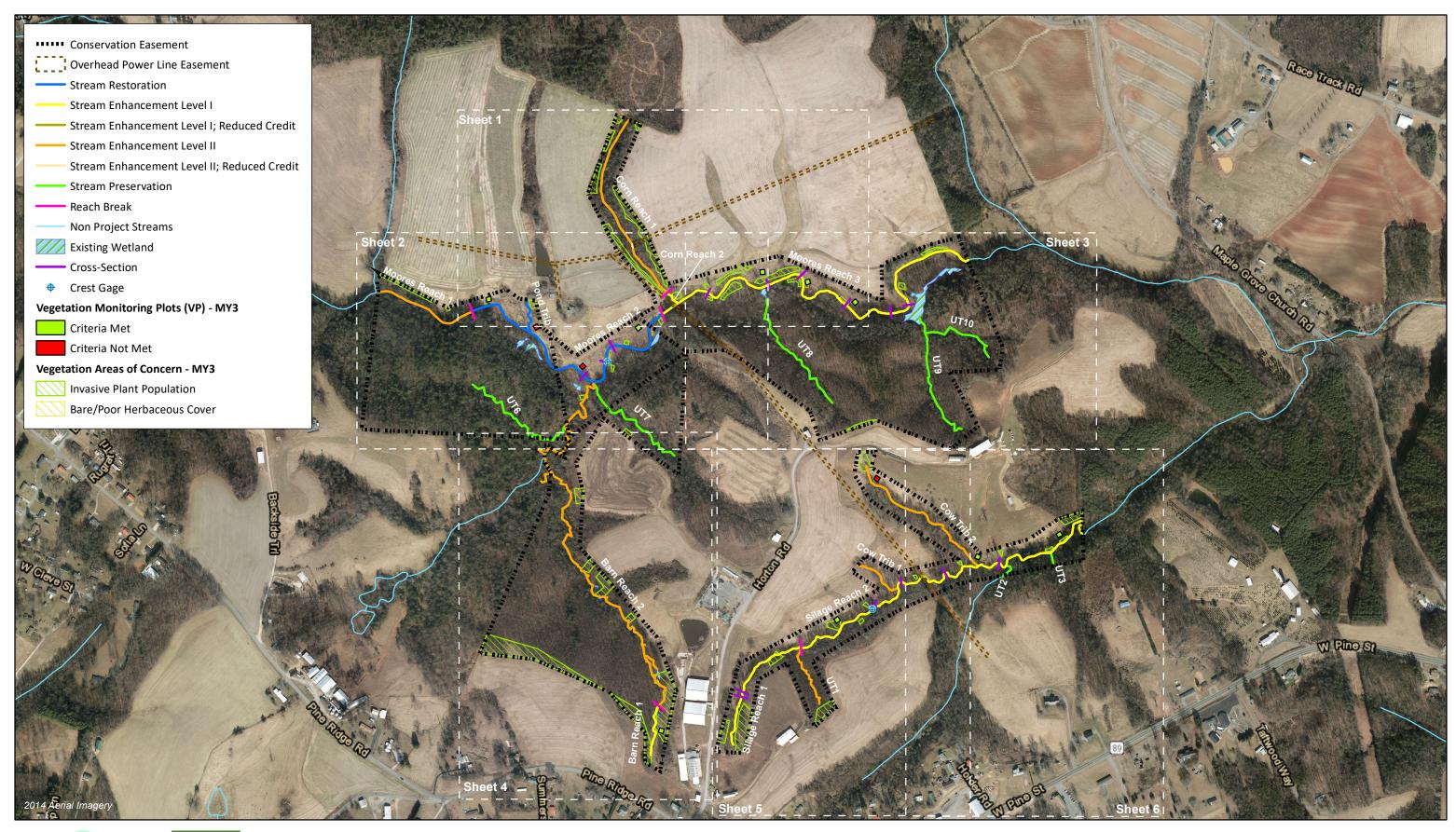
Moores Fork Stream Mitigation Project

DMS Project No. 94709

Monitoring Year 3 - 2018

	Project In	formatio	on								
Project Name	Moores Fork Stream Mitigation P	roject									
County	Surry										
Project Area (acres)	~140										
Project Coordinates (latitude and longitude)	36.506671 N, 80.704115 W										
	Project Watershed S	ummary	/ Information								
Physiographic Province	Piedmont										
River Basin	Yadkin										
USGS Hydrologic Unit 8-digit	03040101										
USGS Hydrologic Unit 14-digit	03040101100010										
DWR Sub-basin	Pee Dee River Subbasin 03-07-02										
Project Drainage Area (acres)	1,527 ac (2.39 mi ²)										
Project Drainage Area Percentage of Impervious Area <5%											
CGIA Land Use Classification											
	Reach Summa	ry Infori	nation								
Parameters	Pond Trib	Bar	n Reach 1 & 2	Corn Re	each 1 & 2	UT1					
Length of Reach Post Construction (LF)	243		3,434	1	,452	466					
Valley classification (Rosgen)	VIII		IV		IV	IV					
Drainage area (acres)	27		184		30	6					
NCDWQ stream identification score	20		36.5		21	23					
NCDWQ Water Quality Classification	WS-IV		WS-IV	W	/S-IV	WS-IV					
Morphological Description (Rosgen stream type)	B4/5		G4		G4	В4					
Evolutionary trend	B-C-F		G-F		G-F	-					
Underlying mapped soils	CsA		FeD2, FsE	Cs	A, FsE	FeD2					
Drainage class	well drained	\	well drained	well	drained	well drained					
Soil Hydric status	not hydric		not hydric	not	hydric	not hydric					
Slope	0.029		0.025	0	.057	0.040 +/-					
FEMA classification	Not in SFHA	1	Not in SFHA	Not	in SFHA	Not in SFHA					
Native vegetation community	Felsic Mesic Forest	Fels	ic Mesic Forest	Felsic M	esic Forest	Felsic Mesic Forest					
Percent composition of exotic invasive vegetation	0		0		0	0					
	Wetland Summ	ary Info	rmation								
Parameters	Wetland 5		Wetland	6							
Size of Wetland (acres)	0.03		0.06								
Wetland Type	riparian non-riverine		riparian non-r	verine							
Mapped Soil Series	FeD2		FsE & FeE)2							
Drainage class	well drained		well drain	ed							
Soil Hydric Status	not hydric		not hydr	c							
Source of Hydrology	Toe Seep		Toe See)							
Hydrologic Impairment	none		none								
Native vegetation community	Dist. Small Stream/		Dist. Small Str	eam/							
	Narrow FP Forest		Narrow FP F	orest							
Percent composition of exotic invasive vegetation	0		0								

N/A Not-applicable


Table 5. Monitoring Component Summary

Moores Fork Stream Mitigation Project DMS Project No. 94709

Monitoring Year 3 - 2018

			Quantity/ Length by Reach												
Parameter	Monitoring Feature	Moores Reach 1	Pond Trib	Moores Reach 2	Corn Reach 1	Corn Reach 2	Moores Reach 3	Silage Reach 1	Silage Reach 2	UT1	Cow Trib 1	Cow Trib 2	Barn 1	Barn 2	Frequency
Dimension	Riffle XS			2			4	1	3						Years 1, 2, 3, 5, 7
Dimension	Pool XS			1			2	1	2						Years 1, 2, 3, 5, 7
Substrate	100 Pebble Count			2			4	1	3						Annual
Hydrology	Crest Gage			1					1						Semi-Annual
Vegetation	Vegetation Plots			4			3	1	2			1	1		Annual
Visual Assessment	Project Site	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Semi-Annual
Reference Photos	Permanent Photo Points	2	2	11	1	2	19	6	12	2	2	4	3	3	Annual

h V Figure 3.0 Integrated Current Condition Plan View (Key)

Moores Fork Stream Mitigation Project

DMS Project No. 94709

Monitoring Year 3 - 2018

Surry County, NC

300

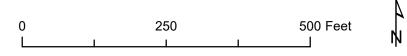



Figure 3.1 Integrated Current Condition Plan View (Sheet 1 of 6)

Moores Fork Stream Mitigation Project

DMS Project No. 94709

Monitoring Year 3 - 2018

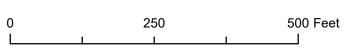


Figure 3.2 Integrated Current Condition Plan View (Sheet 2 of 6)

Moores Fork Stream Mitigation Project

DMS Project No. 94709

Monitoring Year 3 - 2018

Monitoring lear 3 - 2018

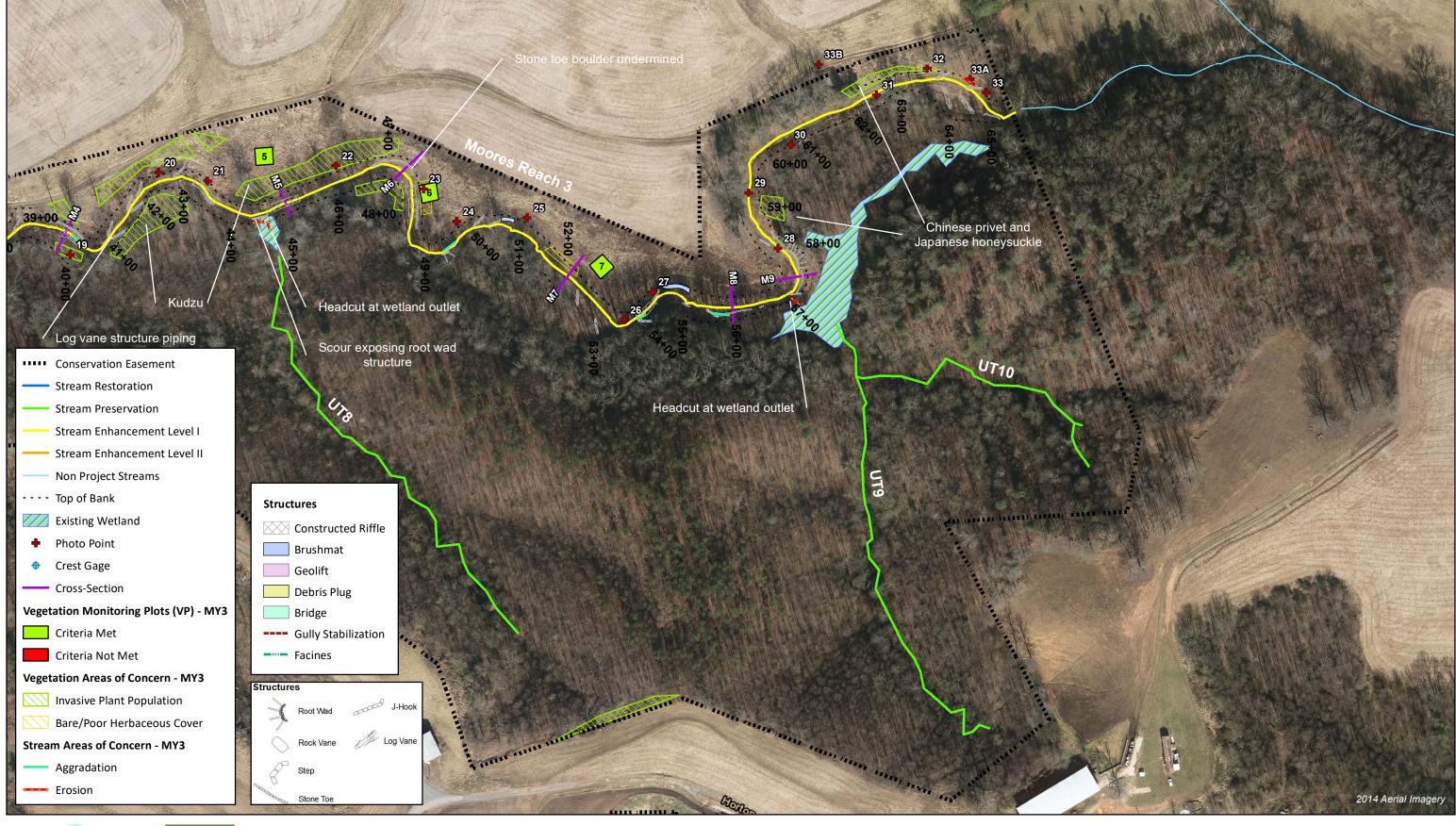
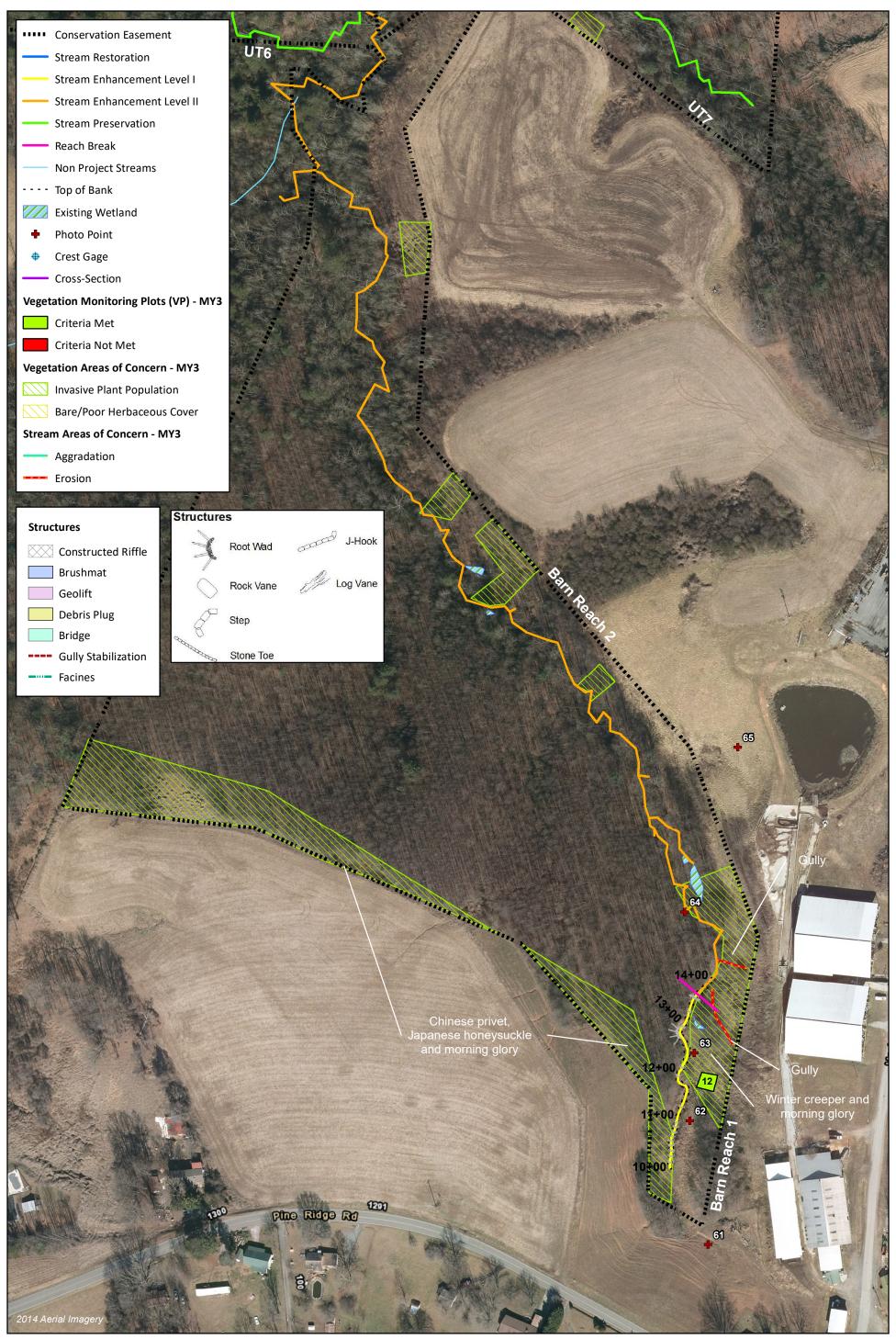


Figure 3.3 Integrated Current Condition Plan View (Sheet 3 of 6)

Moores Fork Stream Mitigation Project

DMS Project No. 94709

Monitoring Year 3 - 2018



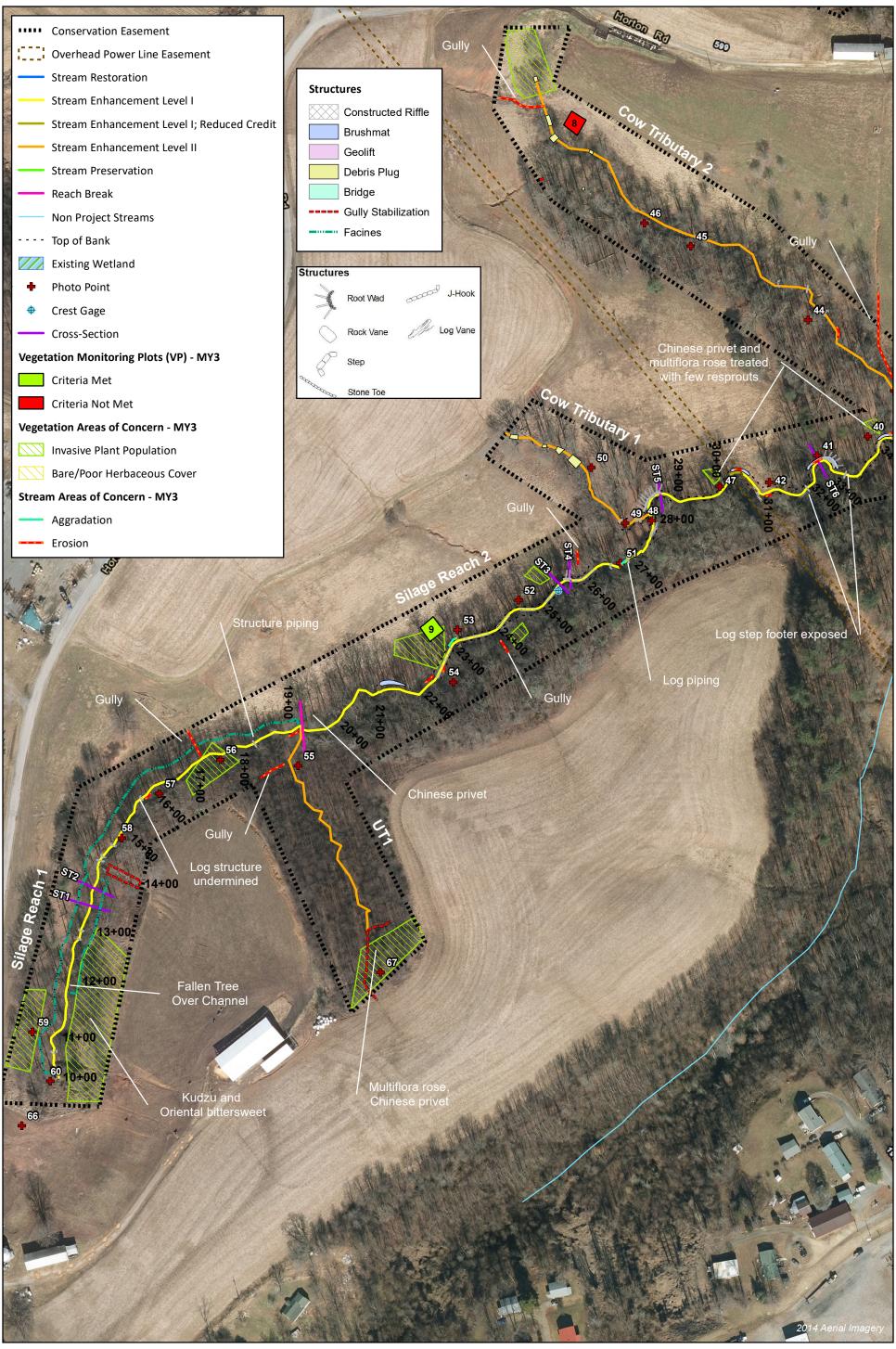


Figure 3.4 Integrated Current Condition Plan View (Sheet 4 of 6)

Moores Fork Stream Mitigation Project

DMS Project No. 94709

Monitoring Year 3 - 2018

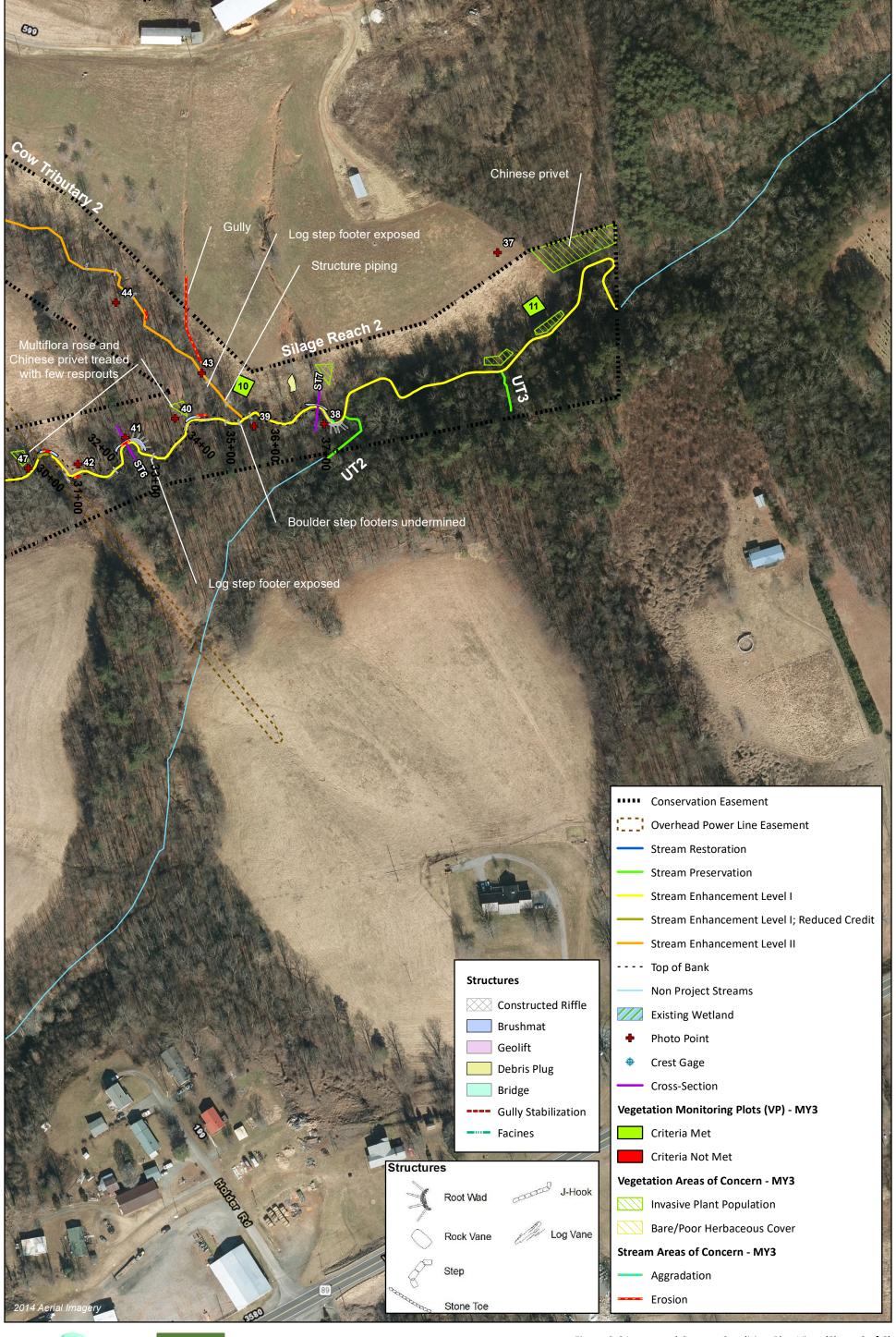


Figure 3.6 Integrated Current Condition Plan View (Sheet 6 of 6)

Moores Fork Stream Mitigation Project

DMS Project No. 94709

Monitoring Year 3 - 2018

Table 6a. Visual Stream Morphology Stability Assessment Table

Moores Fork Stream Mitigation Project DMS Project No. 94709

Monitoring Year 3 - 2018

Moores Fork Reach 1 (Assessed Length: 761 feet)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
		Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
	Run units)	2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	4	4			100%			
1. Bed		1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	5	5			100%			
	3. Meander Pool Condition	Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	5	5			100%	00%		
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	5	5			100%			
	4. maiweg Position	2. Thalweg centering at downstream of meander (Glide)	5	5			100%			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	N/A	N/A			N/A			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	N/A	N/A			N/A			
3. Engineered Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	N/A	N/A			N/A			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	N/A	N/A			N/A			
	4. Habitat	Pool forming structures maintaining $^{\sim}$ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	N/A	N/A			N/A			

Table 6b. Visual Stream Morphology Stability Assessment Table

Moores Fork Stream Mitigation Project DMS Project No. 94709

Monitoring Year 3 - 2018

Moores Fork Reach 2 (Assessed Length: 1875 feet)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			3	85	95%			
	Run units)	2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	8	8			100%			
1. Bed	2 Manualan David Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	6	7			86%			
	Meander Pool Condition A.Thalweg Position	Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	6	7			86%			
	4 Thalwag Position	Thalweg centering at upstream of meander bend (Run)	6	7			86%			
	4. Maiweg Fosition	2. Thalweg centering at downstream of meander (Glide)	6	7			86%			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			2	35	98%	1	10	99%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	2	35	98%	1	10	99%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	16	16			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	5	5			100%			
3. Engineered Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	16	16			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	9	9			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	2	2			100%			

Table 6c. Visual Stream Morphology Stability Assessment Table

Moores Fork Stream Mitigation Project DMS Project No. 94709

Monitoring Year 3 - 2018

Moores Fork Reach 3 (Assessed Length: 2885 feet)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			5	130	95%			
	Run units)	2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	the Channel Sub-Category Metric Performing as Intended 1. Agrandation - Bar formation/growth sufficient to significantly deflect (Instable Segments) 1. Vertical Stability (Riffle and Run units) 2. Riffle Condition 1. Testure/Substrate - Riffle maintains coarser substrate 2. Riffle Condition 1. Testure/Substrate - Riffle maintains coarser substrate 1. Thalwag Control (Max Pool Depth: Mean Bankfull Depth ≥ 1.6) 2. Length appropriate (>30% of centering distance between tail of upstream riffle and head of downstrem riffle) 1. Thalwag Contening at upstream of meander (Gilde) 1. Thalwag Contening at upstream of meander (Gilde) 1. Thalwag Contening at upstream of meander (Gilde) 1. Scoured/Froding 2. Underruit 3. Mass Wasting 3. Mass Wasting 3. Bank sundercut/Overhanging to the extent that mass wasting appears likely. Does NCD include underruit that are modest, appear sustainable and are providing habitat. 3. Mass Wasting 3. Mass Wasting 3. Structures physically intact with no dislodged boulders or logs. 4. On the principle of the stable interpretation of t									
1. Bed	2 Manualan David Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	16	16	Number of Unstable Segments Performing as Intended Stabilizing Woody Vegetation Stabilizing Voody Vegetation Sta					
	3. Weander Pool Condition		16	16			100%			
	4 Thalwag Position	1. Thalweg centering at upstream of meander bend (Run)	16	16			100%			
	4. Maiweg Fosition	2. Thalweg centering at downstream of meander (Glide)	16	16			100%			
	1. Scoured/Eroding				2	50	98%	0	0	98%
2. Bank	2. Undercut	likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	2	50	98%	0	0	98%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	24	27			89%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	6	6			100%			
3. Engineered Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	24	27			89%			
	3. Bank Protection		18	18			100%			
	4. Habitat	Pool forming structures maintaining $^{\sim}$ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	3	3			100%	Vegetation Veg		

Table 6d. Visual Stream Morphology Stability Assessment Table

Moores Fork Stream Mitigation Project DMS Project No. 94709

Monitoring Year 3 - 2018

Silage Reach 1 (Assessed Length: 900 feet)

Major Channel Category	Assessed Length : 900 feet) Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
	Run units)	2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
1. Vertical Stability (Riffle and Run units) 1. Aggradation - Bar formation/growth sufficient to significant flow laterally (not to include point bars) 2. Degradation - Evidence of downcutting 1. Texture/Substrate - Riffle maintains coarser substrate 1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 2. Length appropriate (>30% of centerline distance between tupstream riffle and head of downstrem riffle) 1. Thalweg Position 2. Thalweg centering at upstream of meander bend (Run) 2. Thalweg centering at downstream of meander (Glide) 1. Scoured/Eroding 3. Bank lacking vegetative cover resulting simply from poor grow scour and erosion Banks undercut/overhanging to the extent that mass wasting likely. Does NOT include undercuts that are modest, appear sand are providing habitat. 3. Mass Wasting 3. Mass Wasting 3. Structures physically intact with no dislodged boulders or logs Grade control structures exhibiting maintenance of grade across the supplementation of the supplementati	Texture/Substrate - Riffle maintains coarser substrate	N/A	N/A			N/A				
	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	12	12			100%				
	3. Wearder Pool Condition	Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	12	12			100%			
	4 Thalweg Position	Thalweg centering at upstream of meander bend (Run)	12	12			100%			
	4. maiweg rosition	2. Thalweg centering at downstream of meander (Glide)	12	12			100%			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			2	35	96%	0	0	96%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	2	35	96%	0	0	96%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	6	8			75%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	8	8			100%			
3. Engineered Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	6	8			75%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	1	1			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	N/A	N/A			N/A			

Table 6e. Visual Stream Morphology Stability Assessment Table

Moores Fork Stream Mitigation Project DMS Project No. 94709

Monitoring Year 3 - 2018

Silage Reach 2 (Assessed Length: 2448 feet)

Major Channel Category	Assessed Length : 2448 feet) Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			5	60	98%			
	Run units)	2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Channel Sub-Category Metric Performing a fintended As-built Asperial Number in Unstable Segments Asperial Number in Unstable Proforming as fintended Asperial Number in Unstable Proforming as intended of Unstable Proforming as intended in Unstable Proforming as Intended In								
1. Bed	2 Manual Paul Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	Metric Number of Performings at Intended Total Number in Performings at Intended Number of As-built Number of Segments Amount of Performings and Intended Stabilizing Performing as Intended air formation/growth sufficient to significantly deflect to include point bars) 5 60 98% idence of downcutting 0 0 100% ite - Riffle maintains coarser substrate 15 15 (Max Pool Depth : Mean Bankfull Depth ≥ 1.6) 13 16 ing at upstream of meander bend (Run) 13 16 ing at upstream of meander (Gilde) 13 16 at upstream of meander (Gilde) 0 0 at upstream of meander (Gilde) 13 16 at upstream of meander (Gilde) 0 0 at upstream of meander (Gilde) 0 0							
	3. Meander Pool Condition		13	16			81%			
	4 Thalwag Position	1. Thalweg centering at upstream of meander bend (Run)	13	16			81%			
	4. Halweg rosition	2. Thalweg centering at downstream of meander (Glide)	13	16			81%			
	1. Scoured/Eroding	scour and erosion			6	100	96%	0	0	96%
2. Bank	2. Undercut	likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	6	100	96%	0	0	96%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	12	16			75%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	12	16			75%			
3. Engineered Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	12	16			75%			
	3. Bank Protection	<u> </u>	N/A	N/A			N/A			
	4. Habitat		3	4			75%		Stabilizing Woody Vegetation 0 0 0	

Table 6f. Visual Stream Morphology Stability Assessment Table

Moores Fork Stream Mitigation Project

DMS Project No. 94709

Monitoring Year 3 - 2018

Cow Trib 1 (Assessed Length: 167 feet)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
	Run units)	2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	N/A	N/A		Unstable egments Pootage Unstable 1				
1. Bed	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	2	2			100%		Stabilizing Woody Vegetation 0 0 0	
	3. Weander Pool Condition	Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	2	2			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	N/A	N/A			N/A			
	4. Maiweg Position	2. Thalweg centering at downstream of meander (Glide)	N/A	N/A			N/A			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			N/A	N/A	N/A	0	0	N/A
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			N/A	N/A	N/A	0	0	N/A
	3. Mass Wasting	Bank slumping, calving, or collapse			N/A	N/A	N/A	0	0	N/A
				Totals	0	0	N/A	0	0	N/A
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	13	13			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	Metric Performing as Intended Intended Intended Unstable Segments Unstable Footage Performing as Intended In/growth sufficient to significantly deflect point bars) 0 0 100% downcutting 0 0 100% maintains coarser substrate N/A N/A N/A IDepth : Mean Bankfull Depth ≥ 1.6) 2 2 100% of centerline distance between tail of ownstrem riffle) 2 2 100% earm of meander bend (Run) N/A N/A N/A stream of meander (Glide) N/A N/A N/A resulting simply from poor growth and/or to the extent that mass wasting appears ercuts that are modest, appear sustainable N/A N/A N/A lapse N/A N/A N/A N/A N/A Totals 0 0 N/A th no dislodged boulders or logs. 13 13 100% th no dislodged boulders or logs. 13 13 100% thing maintenance of grade across the sill. 13 13 100% with no dislodged boulders or logs. 13 13 100							
3. Engineered Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	13	13			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	N/A	N/A			N/A			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	N/A	N/A			N/A		Stabilizing Woody Vegetation 0 0 0	

Table 6g. Visual Stream Morphology Stability Assessment Table

Moores Fork Stream Mitigation Project DMS Project No. 94709

Monitoring Year 3 - 2018

Cow Trib 2 (Assessed Length: 767 feet)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
	Run units)	2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	N/A	N/A			N/A			
1. Bed	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	N/A	N/A			N/A			
	3. Weander Pool Condition	Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	N/A	N/A			N/A			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	N/A	N/A			N/A			
	4. Thatweg Position	2. Thalweg centering at downstream of meander (Glide)	N/A	N/A			N/A			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	N/A	N/A	100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			1	20	99%	0	0	99%
				Totals	1	20	99%	0	0	99%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	22	24			92%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	22	24			92%			
3. Engineered Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	22	24			92%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	N/A	N/A			N/A			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	N/A	N/A			N/A			

Table 6h. Visual Stream Morphology Stability Assessment Table

Moores Fork Stream Mitigation Project DMS Project No. 94709

Monitoring Year 3 - 2018

Pond Trib (Assessed Length: 243 feet)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			1	40	84%			
	Run units)	2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	N/A	N/A			N/A			
1. Bed	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	N/A	N/A			N/A			
	3. Meander Pool Condition	Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	N/A	N/A	vegetation. No	overgrown with discernible facets	N/A			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	N/A	N/A	in some segments of channel. N/A					
	4. Thatweg Position	2. Thalweg centering at downstream of meander (Glide)	N/A	N/A			N/A			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	7	7			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	7	7			100%			
3. Engineered Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	N/A	N/A			N/A			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	N/A	N/A			N/A			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	N/A	N/A			N/A			

Table 6i. Visual Stream Morphology Stability Assessment Table

Moores Fork Stream Mitigation Project DMS Project No. 94709

Monitoring Year 3 - 2018

Barn Trib Reach 1 (Assessed Length: 350 feet)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
	Run units)	2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	N/A	N/A			N/A			
1. Bed	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	N/A	N/A			N/A			
	3. Wealider Foor Colluction	Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	N/A	N/A	vegetation. No	overgrown with discernible facets ents of channel.	N/A			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	N/A	N/A			N/A			
	4. maiweg rosition	2. Thalweg centering at downstream of meander (Glide)	N/A	N/A			N/A			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	15	15			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	15	15			100%			
3. Engineered Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	15	15			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	N/A	N/A			N/A			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	1	1			100%			

Table 6j. Visual Stream Morphology Stability Assessment Table

Moores Fork Stream Mitigation Project DMS Project No. 94709

Monitoring Year 3 - 2018

Corn Trib Reach 2 (Assessed Length: 112 feet)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and	<u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
	Run units)	2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	N/A	N/A			N/A			
1. Bed	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	1	1			100%			
	5. Wearder Pool Condition	Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	1	1			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	1	1			100%			
	4. maiweg rosition	2. Thalweg centering at downstream of meander (Glide)	1	1			100%			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	4	4			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	4	4			100%			
3. Engineered Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	4	4			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	N/A	N/A			N/A			
	4. Habitat	Pool forming structures maintaining $^{\sim}$ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	N/A	N/A			N/A			

Table 7. Visual Stream Morphology Stability Assessment Table


Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 3 - 2018

Planted Acreage 15.4

Fianteu Acreage	15.4					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	Very limited cover of both woody and herbaceous material.	0.1 acres	Cross Hatch Yellow	4	0.06	0.4%
2. Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	0.1 acres	N/A	6	0.15	1.0%
			Total	10	0.21	1.4%
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	N/A	0	0.00	0.0%
		(Cumulative Total	10	0.21	1.4%

Easement Acreage 140

Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern	Areas or points (if too small to render as polygons at map scale).	1000 SF	Cross Hatch Green	45	7.0	5.0%
5. Easement Encroachment Areas	Areas or points (if too small to render as polygons at map scale).	None	N/A	0	0.00	0.0%

PP1 – Moores Reach 1, looking upstream (06/05/2018)

PP2 - Moores Reach 1, looking downstream (06/05/2018)

PP3 – Moores Reach 2, looking downstream (06/05/2018)

PP4 – Moores Reach 2, looking downstream (06/05/2018)

PP5 – Moores Reach 2, looking upstream (06/05/2018)

PP6 – Pond Tributary, looking downstream (06/05/2018)

PP13 – Moores Reach 2, looking downstream (06/05/2018)

PP14 – Moores Reach 2, looking downstream (06/05/2018)

PP15 – Moores Reach 2, looking downstream (06/05/2018)

PP16 – Moores Reach 2, looking upstream (06/05/2018)

PP17 – Moores Reach 3, looking downstream (06/05/2018)

PP18 – Moores Reach 3, looking downstream (06/05/2018)

PP19 – Moores Reach 3, looking downstream (06/05/2018)

PP20 – Moores Reach 3, looking downstream (06/05/2018)

PP21 – Moores Reach 3, looking downstream (06/05/2018)

PP22 - Moores Reach 3, looking downstream (06/05/2018)

PP23 – Moores Reach 3, looking downstream (06/05/2018)

PP24 – Moores Reach 3, looking downstream (06/05/2018)

PP25 – Moores Reach 3, looking downstream (06/05/2018)

PP26 - Moores Reach 3, looking downstream (06/05/2018)

PP27 – Moores Reach 3, looking downstream (06/05/2018)

PP28 - Moores Reach 3, looking downstream (06/05/2018)

PP29 – Moores Reach 3, looking downstream (06/05/2018)

PP30 – Moores Reach 3, looking downstream (06/05/2018)

PP36 - Corn Reach 2, looking upstream (06/05/2018)

PP37 – Silage Reach 2, looking downslope (06/06/2018)

PP38 – Silage Reach 2, looking downstream (06/06/2018)

PP39 – Silage Reach 2, looking upstream (06/06/2018)

PP40 – Silage Reach 2, looking downstream (06/06/2018)

PP41 – Silage Reach 2, looking downstream (06/06/2018)

PP42 – Silage Reach 2, looking downstream (06/06/2018)

PP43 – Cow Tributary 2, looking downstream (06/06/2018)

PP44 - Cow Tributary 2, looking downstream (06/06/2018)

PP45 – Cow Tributary 2, looking downstream (06/06/2018)

PP46 – Cow Tributary 2, looking upstream (06/06/2018)

PP48 – Silage Reach 2, looking upstream (06/06/2018)

PP49 – Cow Tributary 1, looking upstream (06/06/2018)

PP50 – Cow Tributary 1, looking upstream (06/06/2018)

PP51 – Silage Reach 2, looking downstream (06/06/2018)

PP52 – Silage Reach 2, looking upstream (06/06/2018)

70° 18.9 x 10°04

PP60 – Silage Reach 1, looking downstream (06/06/2018)

PP61 – Barn Reach 1, looking downslope (06/05/2018)

PP62 – Barn Reach 1, looking downstream (06/05/2018)

PP63 – Barn Reach 1, looking downstream (06/05/2018)

PP64 – Barn Reach 2, looking downstream (06/05/2018)

PP66 – Silage Reach 1, looking upslope (06/05/2018)

PP67 – UT1, looking downstream (06/06/2018)

Table 8. Vegetation Plot Criteria Attainment

Moores Fork Stream Mitigation Project DMS Project No. 94709

Monitoring Year 3 - 2018

Plot	MY3 Success Criteria Met (Y/N)	Tract Mean
1	Υ	
2	N	
3	N	
4	Υ	
5	Υ	
6	Υ	75%
7	Υ	73/0
8	N	
9	Υ	
10	Υ	
11	Υ	
12	Υ	

Table 9. CVS Vegetation Plot Metadata

Moores Fork Stream Mitigation Project

DMS Project No. 94709

Monitoring Year 3 - 2018

Database Name	cvs-eep-entrytool-v2.5.0 Moores MY3.mdb
Database Location	Q:\ActiveProjects\005-02153 Moores Monitoring\Monitoring Year 3\Vegetation Assessment
Computer Name	MIMI-PC
File Size	48578560
DESCRIPTION OF WORKSHEETS II	N THIS DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Proj, total stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
ALL Stems by Plot and spp	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	94709
Project Name	Moores Fork Stream Mitigation
Description	
River Basin	
Length(ft)	
Stream-to-edge Width (ft)	
Area (sq m)	
Required Plots (calculated)	
Sampled Plots	12
Required Plots (calculated)	12
Sampled Plots	12

Table 10. Planted and Total Stem Counts

Moores Fork Stream Mitigation Project DMS Project No. 94709

		-
Monitoring	Year 3 - 20)18

			Current Plot Data (MY3 2018)																				
			94709-01-0001 94709-01-0002 94709-01-0003 94709-01-0004 94709-01-0								0005	947	709-01-	0006	947	09-01-	0007						
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer rubrum	Red Maple	Tree																	1				
Betula nigra	River Birch, Red Birch	Tree															1	L					
Cercis canadensis	Redbud	Shrub Tree																					
Diospyros virginiana	American Persimmon	Tree	3	3	5	1	. 1	1										1	. 1	. 1	L		
Fraxinus pennsylvanica	Green Ash, Red Ash	Tree										8	8	8	2	. 2	2	2 1	. 1	. 1	2	2	2
Liriodendron tulipifera	Tulip Poplar	Tree							3	3	3							1	. 1	. 1			
Nyssa sylvatica	Black Gum	Tree																2	2	2 2	2 2	2	-
Platanus occidentalis	Sycamore	Tree							1	1	1	. 3	3	3	9	9	Ç) 2	2	2 2	7	7	,
Quercus lyrata	Overcup Oak	Tree	6	6	6	4	. 4	4				2	2	2				3	; 3	3	3		
Quercus montana	Rock Chestnut Oak	Tree				1	. 1	1	2	2	2							4	, ⊿	4	1	1	-
Quercus nigra	Water Oak	Tree	3	3	3	1	. 1	1				1	1	1	1	. 1	1						
Quercus phellos	Willow Oak	Tree										1	1	1	2	. 2	2	2					
Rhus glabra	Smooth Sumac	Shrub Tree															1	L					
		Stem count	12	12	14	7	7	7	6	6	6	15	15	15	14	14	16	5 14	14	14	12	12	2 1
	size (ares)		1			1			1			1			1			1			1		
size (ACRES)							0.02	·		0.02			0.02			0.02			0.02			0.02	
		Species count	3	3	3	4	4	4	3	3	3	5	5	5	4	4	6	7	7	7	4	4	ŀ
Stems per ACRE 486 486 567				486	567	283	283	283	243	243	243	607	607	607	567	567	647	567	567	567	486	486	64

				Current Plot Data (MY3 2018)														Annual	Means	1									
			947	09-01-0	8000	947	09-01-0	0009	9470	9-01-0	010	947	09-01-0	0011	947	09-01-0	012	N	IY3 (201	L8)	M	IY2 (201	.7)	MY1 (2016) N			MY	Y0 (2016	5)
Scientific Name	Common Name	Species Type	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS F	P-all	ſ
Acer rubrum	Red Maple	Tree			3						15			2						20			7						
Betula nigra	River Birch, Red Birch	Tree																		1	1	1	3			2			
Cercis canadensis	Redbud	Shrub Tree			1															1									
Diospyros virginiana	American Persimmon	Tree				1	1	3	4	4	4	1	1	1	. 6	6	6	17	17	21	16	16	17	14	14	14	14	14	14
Fraxinus pennsylvanica	Green Ash, Red Ash	Tree													2	2	2	15	15	17	15	15	16	13	13	13	14	14	14
Liriodendron tulipifera	Tulip Poplar	Tree			2			2			40							4	4	48	4	4	70	4	4	8	4	4	4
Nyssa sylvatica	Black Gum	Tree	2	2	2	1	1	1	. 4	4	4	5	5	5				16	16	16	17	17	17	20	20	20	19	19	19
Platanus occidentalis	Sycamore	Tree													1	1	1	23	23	23	24	24	24	25	25	26	26	26	26
Quercus lyrata	Overcup Oak	Tree	3	3	3	6	6	6				3	3	3	1	1	1	28	28	28	30	30	30	28	28	28	29	29	29
Quercus montana	Rock Chestnut Oak	Tree				1	1	1				5	5	5				14	14	14	14	14	14	21	21	21	22	22	22
Quercus nigra	Water Oak	Tree	1	1	1	. 6	6	6	2	2	2							15	15	15	15	15	17	14	14	14	14	14	14
Quercus phellos	Willow Oak	Tree				1	1	1										4	4	4	4	4	4	7	7	7	7	7	7
Rhus glabra	Smooth Sumac	Shrub Tree			2															5			2			1			
		Stem count	6	6	14	16	16	20	10	10	65	14	14	16	10	10	10	136	136	213	140	140	221	146	146	154	149	149	149
		size (ares)		1			1			1			1			1			12			12		1	12			12	
	size (AC			0.02			0.02			0.02			0.02			0.02			0.30			0.30		1	0.30			0.30	
		Species count	3	3	7	6	6	7	3	3	5	4	4	5	4	4	4	9	9	13	10	10	12	9	9	11	9	9	9
		Stems per ACRE	243	243	567	647	647	809	405	405	2630	567	567	647	405	405	405	459	459	718	472	472	745	492	492	519	502	502	502

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS: Number of pla

P-all: Number of planted stems including live stakes

T: Total stems

APPENDIX D. Morphological Summary Data and Plots	

Table 11a. Baseline Stream Data Summary

Moores Fork Stream Mitigation Project DMS Project No.94709

Monitoring Year 3 - 2018

Moores Reach 1, Reach 2, & Reach 3; Silage Reach 1 & Reach 2

Moores Reach 1, Reach 2, & Reach 3; Silage Reach 1	. & Reach	2					ı							
			PRE-RESTORATI	ON CONDITION		REFERENCE REACH DATA	\	DES	SIGN			AS-BUILT	/BASELINE	
Parameter	Gage	Moores Fork Reaches 1/2	Moores Fork Reach 3	Silage Reach 1	Silage Reach 2	Mill Branch	Moores Fork Reaches 1/2	Moores Fork Reach 3	Silage Reach 1	Silage Reach 2	Moores Fork Reaches 1/2	Moores Fork Reach 3	Silage Reach 1	Silage Reach 2
		Min Max	Min Max	Min Max	Min Max	Min Max	Min Max	Min Max	Min Max	Min Max	Min Max	Min Max	Min Max	Min Max
Dimension and Substrate - Riffle														
Bankfull Width (ft)		27.3 30.6	24.9 34.2	6.7 6.9	18.2	27.2 33.6	36.5	37.0	8.8	12.5	31.8 33.2	30.2 52.2	4.2	10.6 14.6
Floodprone Width (ft)		109.0 137.7	104.0 125.0	11 16.0	100.0	72.1 72.5	145	124	19	28	145	124	9.4	23 30
Bankfull Mean Depth		1.7 2.6	2.3 2.9	0.8 1.2	1.7	1.9 2.2	2.2	2.3	0.6	1.00	2.1 2.2	1.9 2.6	0.7	0.6 0.8
Bankfull Max Depth		3.0 3.4	4.0	1.2 1.7	2.3	2.4 2.7	3.5	3.6	0.8	1.50	3.3 3.5	3.3 4.1	1.2	1.3 1.5
Bankfull Cross-sectional Area (ft ²)	N/A	46.9 78.2	73.3 77.6	5.6 8.4	31.6	50.8 72.4	82.1	85.3	5.1	13.1	67.2 74.1	72.5 101.1	2.8	6.9 9.3
Width/Depth Ratio		12.0 15.9	8.4 15.1	5.7 8.0	10.5	14.5 15.6	16.2	16.0	15.1	11.9	14.9 15	12.5 26.9	6.4	16.2 22.7
Entrenchment Ratio		4.0 4.5	3.7 4.2	1.6 2.3	5.5	2.7	5.0	4.0	2.2	2.2	4.4 4.6	2.5 4.1	4.5	1.3 2.6
Bank Height Ratio		1.2 1.4	1.2 1.9	1.0 1.6	3.1	1.0 1.1	1.0	1.0	1.0	1.5	1.0	1.0	1.0	1.0
D50 (mm)		29	30	4	23	20	29	30	4	23	11 25	13 28	16	6 14
Riffle Length (ft)							50 70	10 195		16 63	32 178	26.0 199.0		13.12 55.95
Riffle Slope (ft/ft)							0.0059 0.0180	0.0038 0.02		0.0492 0.0514	0.0045 0.0158	0.0027 0.0180		0.0017 0.0554
Pool Length (ft)	N/A						42 140	40 112		15 35	63 170	81.0 139.0		10 19
Pool Max Depth (ft)							5.0	5.5			3.0 6.0	4.3 8.5	1.2	1.4 2.4
Pool Spacing (ft)							130 270	78 334	20 23	15 75	118 295	106 325	13.3 171.5	21 79
Pattern														
Channel Beltwidth (ft)		52 161	43 208			86	55 165	53 267			7 84	8 59	7 36	8 59
Radius of Curvature (ft)		65.8 102.7	41 94			19.6 25.8	53 124	58 74			25 58	13 24	9 25	13 24
Rc:Bankfull Width (ft/ft)	N/A	2.4 3.4	1.7 2.8			0.7 0.9	2.0 6.0	1.7 4.0			0.8 1.8	0.4 0.8	2.1 6.0	1.2 2.3
Meander Length (ft)		N/A	N/A			N/A	N/A	N/A			123 210	63 158	61 100	63 158
Meander Width Ratio		1.9 5.3	1.7 6.1			3.2	1.9 5.7	1.7 8.6			3.9 6.6	2.1 5.2	14.5 23.8	5.9 14.9
Substrate, Bed and Transport Parameters														
Ri%/Ru%/P%/G%/S%														4
SC%/Sa%/G%/C%/B%/Be%														
d50/d84/d95	N/A	28/67/89 and 29/43/56				40/89/133					25/58/90 and 11/38/110	8; 28/62/150; 13/28/51; 2	16/35/61	9.8/37/64 and 6/31/72
Max part size (mm) mobilized at bankfull														4
Stream Power (Capacity) W/m ²														<u>A</u>
Additional Reach Parameters							_							
Drainage Area (SM)		1.9	2.39	0.070	0.24	5	1.90	2.34	0.070	0.24	1.90	2.34	0.070	0.24
Watershed Impervious Cover Estimate (%)		<5%	<5%	<5%	<5%		<5%	<5%	<5%	<5%	<5%	<5%	<5%	<5%
Rosgen Classification		C4	C4	G4/B4	E4	C4	C4	C4	B4	E4	C4	C4	B4	E4
Bankfull Velocity (fps)		4.1 5.3	4.6 5.2	5.4 6.6	6.3	5.0 5.5	5.0	4.9	4.5	4.5	4.4 4.6	4.2 5.1	5.0	4.5 5.1
Bankfull Discharge (cfs)	21/2	193.9 411.4	380.1 358.4	30.2 55.1	197.5	N/A	250-260	260	24	60	297.6 340.8	348.4 468.7	13.8	31.2 44.3
Q-USGS NC HR1 (2-yr)	N/A	237-278	278	29	63	385	237-278	278	29	63	237-278	278	29	63
Valley Length (ft)		2227	2234 2847	1079	1200 1441	4730 327	2227	2234	1079	1200 1441	2227	2234	1079 1,198	1200
Channel Thalweg Length (ft)		2393 1.07	1.27	1198 1.11	1441	1.26	2578 1.16	2825 1.26	1198 1.11	1.20	2,628 1.2	2,856 1.3	1,198	1,441 1.20
Sinuosity		0.0077	0.0067	0.0357	0.0294	0.0101	0.0076	0.0064	0.0357	0.0294	0.005541	0.005511	0.0389	0.02758
Water Surface Slope (ft/ft) ² Bankfull Slope (ft/ft)		0.0077	0.0067	0.0357	0.0294	0.0101	0.0076	0.0064	0.0357	0.0294	0.005341	0.005511	0.0389	0.02758
Bankfull Slope (ft/ft)											0.005205	0.006112	0.0404	0.02740

(---): Data was not provided

N/A: Not Applicable

Table 11b. Baseline Stream Data Summary

Moores Fork Stream Mitigation Project

DMS Project No.94709

Monitoring Year 3 - 2018

Barn Trib, Corn Trib, Pond Trib												
			PRE-RESTORATION CONDITION	N	REFERENCE	REACH DATA		DESIGN			AS-BUILT/BASELINE	
Parameter Ga	age	Barn	Corn	Pond	Barn Trib Pres Rch	Corn Trib Pres Rch	Barn (Reach 1)	Corn	Pond	Barn (Reach 1)	Corn (Reach 2)	Pond
		Min Max	Min Max	Min Max	Min Max	Min Max	Min Max	Min Max	Min Max	Min Max	Min Max	Min Max
Dimension and Substrate - Riffle							1					
Bankfull Width (ft)	_	1.6	4.6	16.3	7.0	4.1	6.0	6.6	8.0			
Floodprone Width (ft)		4.0	7.8	50.0	9.9	13.7	19	20	25			
Bankfull Mean Depth		0.6	0.5	1.5	0.7	0.4	0.5	0.4	0.7			
Bankfull Max Depth	. , .	0.8	0.7	2.6	1.1	0.5	0.8	0.6	1.0			
Bankfull Cross-sectional Area (ft²) N/	I/A	0.9	2.4	24.4	4.6	1.5	3.2	2.9	5.5			
Width/Depth Ratio	<u> </u>	2.9	8.9	10.9	10.6	11.2	11.3	15.1	11.6			
Entrenchment Ratio	_	2.5	1.7	3.1	1.4	3.3	3.2	3.0	3.1			
Bank Height Ratio	_	7.6	3.8	1.1	1.6	1.7	1.0	1.0	1.0			
D50 (mm)					46	46						
Riffle Length (ft)									5 31		12.0	8.4 27.3
Riffle Slope (ft/ft)									0.02 0.0538		0.0498	0.0136 0.0241
Pool Length (ft)							8 13		10 30		17.5 32.9	27.8 37.9
Pool Max Depth (ft)	I/A										2.6 3.6	0.7 1.4
Pool Spacing (ft)							8 10		15 54	6.11 77.7	9 56	22 43
Pool Volume (ft ³)												
Pattern												
Channel Beltwidth (ft)										13 26	20 22	24 24
Radius of Curvature (ft)										12 30	12 29	15 21
Rc:Bankfull Width (ft/ft) N,	I/A											
Meander Length (ft)										71 85	49 61	66 78
Meander Width Ratio												
Substrate, Bed and Transport Parameters												
Ri%/Ru%/P%/G%/S%												
SC%/Sa%/G%/C%/B%/Be%												
d50/d84/d95 N/	I/A											
Max part size (mm) mobilized at bankfull												
Stream Power (Capacity) W/m ²												
Additional Reach Parameters												
Drainage Area (SM)		0.01	0.05	0.04	0.08	0.05	0.01	0.05	0.040	0.01	0.05	0.040
Watershed Impervious Cover Estimate (%)		<5%	<5%	<5%	<5%	<5%	<5%	<5%	<5%	<5%	<5%	<5%
Rosgen Classification		G4	G4	C4b (trampled)	B4	E4b	E4b	B4	C4b	E4b	B4	C4b
Bankfull Velocity (fps)		2.70	5.01	7.4	3.84	2.7	3.31	4.7	3.93			
Bankfull Discharge (cfs)		2.5	12.0	181.4	17.7	4.0	11		19			
Q-USGS NC HR1 (2-yr)	I/A	8		20			8		20			
Q-Mannings	''^	11		19			11		19	11		19
Valley Length (ft)		622	84	187	622		330	84	187	330	84	187
Channel Thalweg Length (ft)		250	97	194	84	28	350	97	243	350	112	243
Sinuosity	L	0.40	1.15	1.04	0.14		1.06	1.15	1.30	1.06	1.3	1.3
Water Surface Slope (ft/ft) ²		0.0206	0.0567	0.029	0.0211	0.0243	0.0206	0.0567	0.0176	0.0478 0.1124	0.0425	0.0118
Bankfull Slope (ft/ft)										0.0463 0.1005	0.0478	0.0129

(---): Data was not provided

N/A: Not Applicable

Table 12a. Morphology and Hydraulic Summary (Dimensional Parameters - Cross-Section)

Moores Fork Stream Mitigation Project DMS Project No.94709

Monitoring Year 3 - 2018

Moores Fork

Moores Fork																										
	Cross-Section M1 (Riffle)									Cross-Section M2 (Riffle)									Cross-Section M3 (Pool)							
Dimension and Substrate	Base	MY1	MY2	MY3 ²	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3 ²	MY4	MY5	MY6	MY7	Base ¹	MY1 ¹	MY2	MY3 ²	MY4	MY5	MY6	MY7		
bankfull elevation (ft)	1150.4	1150.4	1150.4	1150.5					1148.7	1148.7	1148.7	1149.1					1148.4	1148.4	1148.4	1148.7			l			
low bank elevation (ft)	1150.4	1150.5	1150.4	1150.3					1148.7	1148.7	1148.6	1148.8					1148.4	1148.3	1148.4	1146.7			l			
Bankfull Width (ft)	33.2	34.2	34.1	36.0					31.8	32.5	32.5	38.5					39.1	39.3	38.9	42.4			1			
Floodprone Width (ft)		145.0	145.0	145.0					145.0	145.0	145.0	145.0											l .			
Bankfull Mean Depth (ft)	2.2	2.2	2.1	2.1					2.1	2.0	1.9	1.7					2.3	2.3	2.3	2.2			l			
Bankfull Max Depth (ft)	3.3	3.2	3.4	3.5					3.5	3.4	3.4	3.7					5.2	5.1	5.2	5.4			l			
Bankfull Cross-Sectional Area (ft ²)	74.1	74.3	71.9	74.1					67.2	65.6	62.0	67.2					91.8	90.1	87.8	91.8			1			
Bankfull Width/Depth Ratio	14.9	15.7	16.1	17.5					15.0	16.1	17.0	22.1					16.6	17.2	17.2	19.5			1			
Bankfull Entrenchment Ratio	4.4	4.2	4.3	4.0					4.6	4.5	4.5	3.8											i i			
Bankfull Bank Height Ratio	1.0	1.0	1.0	<1.0					1.0	1.0	1.0	<1.0											i i			
	Cross-Section M4 (Riffle)									Cros	s-Sectio	n M5 (R	iffle)			Cross-Section M6 (Pool)										
Dimension and Substrate	Base	MY1	MY2	MY3 ²	MY4	MY5	MY6	MY7	Base ¹	MY1	MY2	MY3 ²	MY4	MY5	MY6	MY7	Base ¹	MY1	MY2	MY3 ²	MY4	MY5	MY6	MY7		
bankfull elevation (ft)	1142.3	1142.3	1142.3	1142.5					1139.5	1139.5	1139.5	1139.5					1138.6	1138.6	1138.6	1138.4			1			
low bank elevation (ft)	1141.6	1141.6	1141.6	1141.6					1139.5	1139.4	1139.7	1139.7					1138.6	1138.5	1138.5	1136.8			1			
Bankfull Width (ft)	52.2	51.6	52.3	56.7					32.0	31.6	32.6	32.7					39.3	39.1	39.3	45.5			1			
Floodprone Width (ft)	124.0	124.0	124.0	124.0					124.0	124.0	124.0	124.0											1			
Bankfull Mean Depth (ft)	1.9	1.9	1.8	1.8					2.3	2.3	2.2	2.2					2.7	2.7	2.9	2.3			i i			
Bankfull Max Depth (ft)	3.3	3.2	3.7	3.5					3.5	3.6	3.6	3.8					5.1	5.5	5.2	5.0			1			
Bankfull Cross-Sectional Area (ft ²)	101.1	97.4	95.8	101.1					73.0	72.4	72.8	73.0					106.1	106.2	115.6	106.1			1			
Bankfull Width/Depth Ratio	26.9	27.3	28.6	31.9					14.0	13.8	14.6	14.6					14.5	14.4	13.3	19.5						
Bankfull Entrenchment Ratio	2.4	2.4	2.4	2.2					3.9	3.9	4.1	3.8														
Bankfull Bank Height Ratio	<1.0	<1.0	<1.0	<1.0					1.0	1.0	1.1	1.0														
			Cro	ss-Sectio	on M7 (F	Run)				Cross-Section M8 (Riffle)									Cross-Section M9 (Pool)							
Dimension and Substrate	Base ¹	MY1	MY2	MY3 ²	MY4	MY5	MY6	MY7	Base	MY1 ¹	MY2	MY3 ²	MY4	MY5	MY6	MY7	Base	MY1 ¹	MY2	MY3 ²	MY4	MY5	MY6	MY7		
bankfull elevation (ft)	1134.9	1134.9	1134.9	1135.0					1132.4	1132.4	1132.4	1132.4					1132.1	1132.1	1132.1	1132.1						
low bank elevation (ft)	1134.9	1134.9	1135.0	1134.8					1132.4	1132.3	1132.3	1132.2					1132.1	1132.1	1132.1	1132.1			1			
Bankfull Width (ft)	49.5	49.2	49.6	51.0					34.6	34.0	33.5	36.5					30.6	33.1	32.9	35.9			1			
Floodprone Width (ft)	124.0	124.0	124.0	124.0					124.0	124.0	124.0	124.0											1			
Bankfull Mean Depth (ft)	2.4	2.4	2.4	2.3					2.6	2.7	2.7	2.5					4.0	3.8	3.7	3.4			1			
Bankfull Max Depth (ft)	3.5	3.5	3.8	4.0					4.1	4.3	4.2	4.3					6.3	6.3	6.5	6.2			1			
Bankfull Cross-Sectional Area (ft ²)	118.1	117.0	117.7	118.1					91.5	91.5	89.2	91.5					122.0	125.9	122.3	122.0			1			
Bankfull Width/Depth Ratio		20.7	20.9	22.0					13.1	12.6	12.6	14.6					7.7	8.7	8.8	10.6			i			
Bankfull Entrenchment Ratio	2.5	2.5	2.5	2.4					3.6	3.6	3.7	3.4											i			
Bankfull Bank Height Ratio	1.0	1.0	1.0	<1.0					1.0	1.0	1.0	1.0														

¹Adjustment in survey points included in bankfull calculations resulting in change to previous monitoring year bankfull dimensions.

²Prior to MY3, bankfull dimensions were calculated using a fixed bankfull elevation. For MY3 through MY7 bankfull elevation is calculated using a fixed Abkf as described in the Standard Measurement of the BHR Monitoring Parameter provided by NCIRT and NCDMS (9/2018).

Table 12b. Morphology and Hydraulic Summary (Dimensional Parameters - Cross-Section)

Moores Fork Stream Mitigation Project

DMS Project No.94709

Monitoring Year 3 - 2018

Silage Tributary																									
	Cross-Section ST1 (Riffle)								Cross-Section ST2 (Pool)									Cross-Section ST3 (Riffle)							
Dimension and Substrate	Base	MY1	MY2	MY3 ²	MY4	MY5	MY6	MY7	Base	MY1 ¹	MY2	MY3 ²	MY4	MY5	MY6	MY7	Base	MY1 ¹	MY2	MY3 ²	MY4	MY5	MY6	MY7	
bankfull elevation (ft)	1234.6	1234.6	1234.6	1234.1					1233.4	1233.4	1233.4	1233.3					1193.4	1193.4	1193.4	1193.2			,		
low bank elevation (ft)	1234.6	1234.6	1234.6	1234.4					1233.4	1233.4	1233.5	1233.4					1193.4	1193.4	1193.4	1193.0			,		
Bankfull Width (ft)	4.2	4.0	4.5	4.2					5.1	4.5	5.3	4.6					14.6	14.7	14.6	12.9					
Floodprone Width (ft)	9.4	9.2	9.6	10.7													22.5	22.8	24.6	24.6					
Bankfull Mean Depth (ft)	0.7	0.6	0.9	0.7					0.6	0.6	0.6	0.7					0.6	0.6	0.8	0.7					
Bankfull Max Depth (ft)	1.2	1.1	1.5	0.9					1.2	1.2	1.1	1.0					1.3	1.3	1.9	1.7					
Bankfull Cross-Sectional Area (ft ²)	2.8	2.3	4.1	2.8					3.2	2.8	3.0	3.2					9.3	8.8	11.0	9.3					
Bankfull Width/Depth Ratio	6.4	6.7	4.8	6.2					8.0	7.2	9.2	6.5					22.7	22.8	19.4	18.0					
Bankfull Entrenchment Ratio	2.2	2.3	2.2	2.6													1.5	1.5	1.7	1.9					
Bankfull Bank Height Ratio	1.0	1.0	1.0	1.3													1.0	1.0	1.0	<1.0					
	Cross-Section ST4 (Pool)								Cross-Section ST5 (Pool)								Cross-Section ST6 (Riffle)								
Dimension and Substrate	Base ¹	MY1 ¹	MY2	MY3 ²	MY4	MY5	MY6	MY7	Base ¹	MY1 ¹	MY2	MY3 ²	MY4	MY5	MY6	MY7	Base ¹	MY1 ¹	MY2	MY3 ²	MY4	MY5	MY6	MY7	
bankfull elevation (ft)	1193.1	1193.1	1193.1	1192.9					1185.1	1185.1	1185.1	1184.8					1175.4	1175.4	1175.4	1175.4			,		
low bank elevation (ft)	1193.1	1192.9	1192.9	1192.3					1185.1	1184.9	1185.0	1184.7					1175.4 1175.3 1175.3 1175.4								
Bankfull Width (ft)	13.9	14.9	14.7	15.3					7.8	8.7	8.4	8.8					9.6	8.4	8.7	8.2					
Floodprone Width (ft)																	28.0	28.0	28.0	28.0					
Bankfull Mean Depth (ft)	1.1	1.3	1.1	1.0					1.0	0.9	1.0	0.9					0.7	0.7	0.8	0.8					
Bankfull Max Depth (ft)	2.4	2.7	2.3	2.3					1.4	1.5	1.6	1.3					1.3	1.5	1.5	1.5					
Bankfull Cross-Sectional Area (ft ²)	15.5	19.4	16.0	15.5					7.9	8.1	8.7	7.9					6.8	6.1	7.3	6.8					
Bankfull Width/Depth Ratio	12.5	11.4	13.4	15.2					7.7	9.4	8.1	9.8					13.5	11.6	10.4	9.9			,		
Bankfull Entrenchment Ratio																	2.9	3.3	3.2	3.4					
Bankfull Bank Height Ratio																	1.0	<1.0	<1.0	1.0					
			Cros	s-Sectio	n ST7 (R	iffle)																			
Dimension and Substrate	Base ¹	MY1 ¹	MY2	MY3 ²	MY4	MY5	MY6	MY7																	
bankfull elevation (ft)	1164.7	1164.7	1164.7	1164.7																					
low bank elevation (ft)	1164.7	1164.6	1164.6	1164.6																					
Bankfull Width (ft)	10.3	10.5	10.8	9.6																					
Floodprone Width (ft)	29.6	31.8	33.6	32.9																					
Bankfull Mean Depth (ft)	0.9	0.9	0.9	0.9																					

1.8 1.6

9.6

12.1 10.5

3.1

1.0

8.8

3.4

1.0

9.3

3.0

12.0 12.0

1.0 <1.0

Bankfull Max Depth (ft) 1.5 1.6

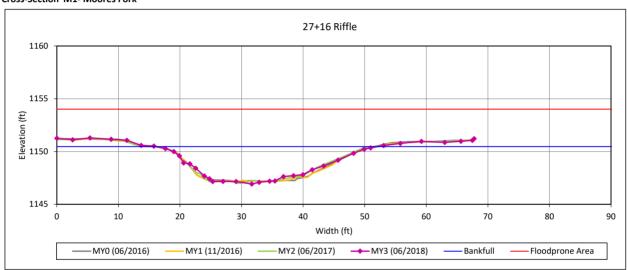
Bankfull Cross-Sectional Area (ft²)

Bankfull Width/Depth Ratio

Bankfull Bank Height Ratio

Bankfull Entrenchment Ratio

¹Adjustment in survey points included in bankfull calculations resulting in change to previous monitoring year bankfull dimensions.


²Prior to MY3, bankfull dimensions were calculated using a fixed bankfull elevation. For MY3 through MY7 bankfull elevation is calculated using a fixed Abkf as described in the Standard Measurement of the BHR Monitoring Parameter provided by NCIRT and NCDMS (9/2018).

Moores Fork Stream Mitigation Project

DMS Project No. 94709

Monitoring Year 3 - 2018

Cross-Section M1- Moores Fork

Bankfull Dimensions

74.1 x-section area (ft.sq.)

36.0 width (ft)

2.1 mean depth (ft)

3.5 max depth (ft)

37.2 wetted perimeter (ft)

2.0 hydraulic radius (ft)

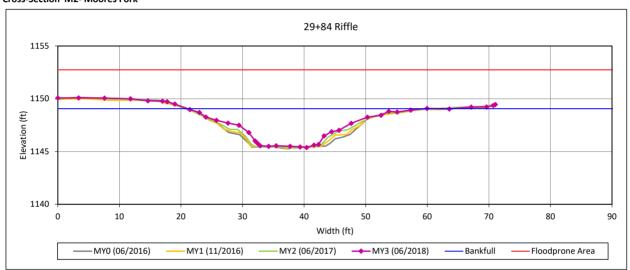
17.5 width-depth ratio

145.0 W flood prone area (ft)

4.0 entrenchment ratio

0.9 low bank height ratio

Survey Date: 06/2018


View Downstream

Moores Fork Stream Mitigation Project

DMS Project No. 94709

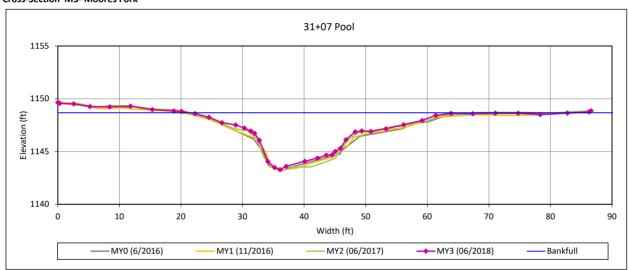
Monitoring Year 3 - 2018

Cross-Section M2- Moores Fork

Bankfull Dimensions

- 67.2 x-section area (ft.sq.)
- 38.5 width (ft)
- 1.7 mean depth (ft)
- 3.7 max depth (ft)
- 39.9 wetted perimeter (ft)
- 1.7 hydraulic radius (ft)
- 22.1 width-depth ratio
- 145.0 W flood prone area (ft)
- 3.8 entrenchment ratio
- 0.9 low bank height ratio

Survey Date: 06/2018


View Downstream

Moores Fork Stream Mitigation Project

DMS Project No. 94709

Monitoring Year 3 - 2018

Cross-Section M3- Moores Fork

Bankfull Dimensions

91.8 x-section area (ft.sq.)

42.4 width (ft)

2.2 mean depth (ft)

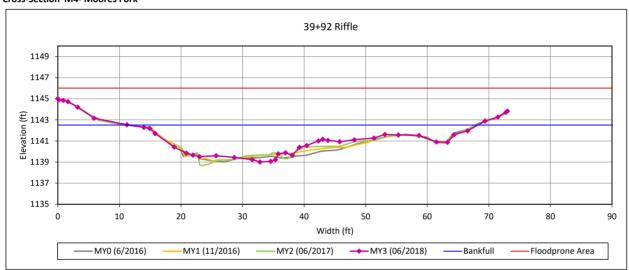
5.4 max depth (ft)

wetted perimeter (ft) hydraulic radius (ft) 44.9

2.0

19.5 width-depth ratio

Survey Date: 06/2018


View Downstream

Moores Fork Stream Mitigation Project

DMS Project No. 94709

Monitoring Year 3 - 2018

Cross-Section M4- Moores Fork

Bankfull Dimensions

101.1 x-section area (ft.sq.)

56.7 width (ft)

1.8 mean depth (ft)

3.5 max depth (ft)

58.3 wetted perimeter (ft)

1.7 hydraulic radius (ft)

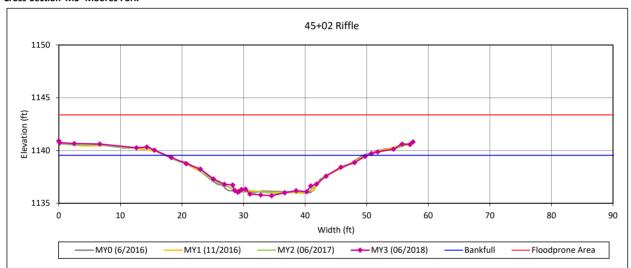
31.9 width-depth ratio

124.0 W flood prone area (ft)

2.2 entrenchment ratio

0.7 low bank height ratio

Survey Date: 06/2018


View Downstream

Moores Fork Stream Mitigation Project

DMS Project No. 94709

Monitoring Year 3 - 2018

Cross-Section M5- Moores Fork

Bankfull Dimensions

73.0 x-section area (ft.sq.)

32.7 width (ft)

2.2 mean depth (ft)

3.8 max depth (ft)

34.3 wetted perimeter (ft)

2.1 hydraulic radius (ft)

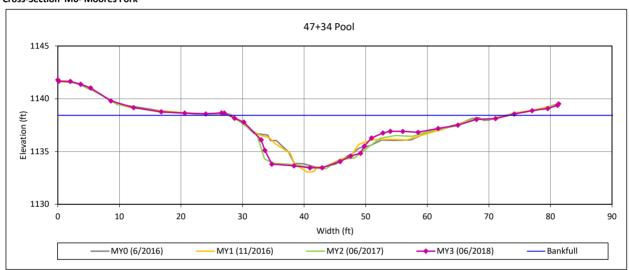
14.6 width-depth ratio

124.0 W flood prone area (ft)

3.8 entrenchment ratio

1.0 low bank height ratio

Survey Date: 06/2018


View Downstream

Moores Fork Stream Mitigation Project

DMS Project No. 94709

Monitoring Year 3 - 2018

Cross-Section M6- Moores Fork

Bankfull Dimensions

106.1 x-section area (ft.sq.)

width (ft) 45.5

2.3 mean depth (ft)

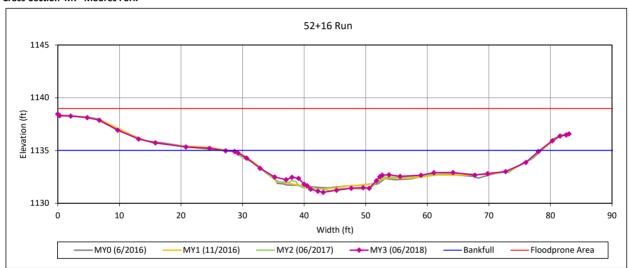
5.0 max depth (ft)

wetted perimeter (ft) hydraulic radius (ft) 48.1

2.2

19.5 width-depth ratio

Survey Date: 06/2018


View Downstream

Moores Fork Stream Mitigation Project

DMS Project No. 94709

Monitoring Year 3 - 2018

Cross-Section M7- Moores Fork

Bankfull Dimensions

118.1 x-section area (ft.sq.)

51.0 width (ft)

2.3 mean depth (ft)

4.0 max depth (ft)

52.6 wetted perimeter (ft)

2.2 hydraulic radius (ft)

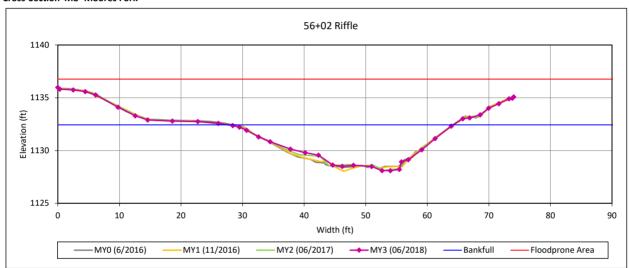
22.0 width-depth ratio

124.0 W flood prone area (ft)

2.4 entrenchment ratio

0.9 low bank height ratio

Survey Date: 06/2018


View Downstream

Moores Fork Stream Mitigation Project

DMS Project No. 94709

Monitoring Year 3 - 2018

Cross-Section M8- Moores Fork

Bankfull Dimensions

91.5 x-section area (ft.sq.)

36.5 width (ft)

2.5 mean depth (ft)

4.3 max depth (ft)

38.3 wetted perimeter (ft)

2.4 hydraulic radius (ft)

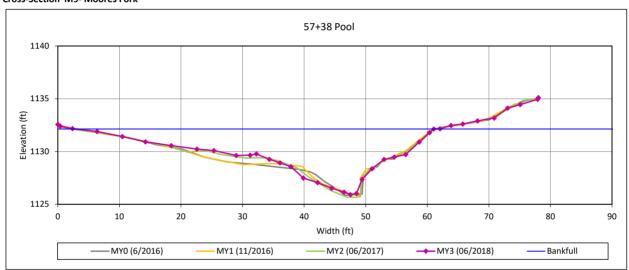
14.6 width-depth ratio

124.0 W flood prone area (ft)

3.4 entrenchment ratio

1.0 low bank height ratio

Survey Date: 06/2018


View Downstream

Moores Fork Stream Mitigation Project

DMS Project No. 94709

Monitoring Year 3 - 2018

Cross-Section M9- Moores Fork

Bankfull Dimensions

122.0 x-section area (ft.sq.)

35.9 width (ft)

3.4 mean depth (ft)

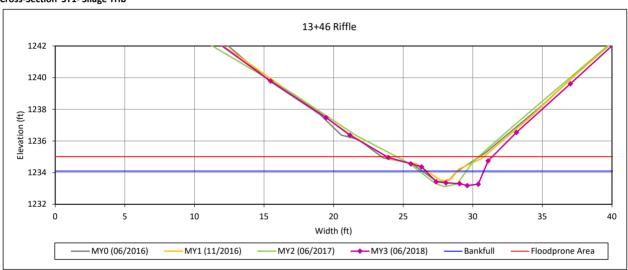
6.2 max depth (ft)

wetted perimeter (ft) hydraulic radius (ft) 38.3

3.2

10.6 width-depth ratio

Survey Date: 06/2018


View Downstream

Moores Fork Stream Mitigation Project

DMS Project No. 94709

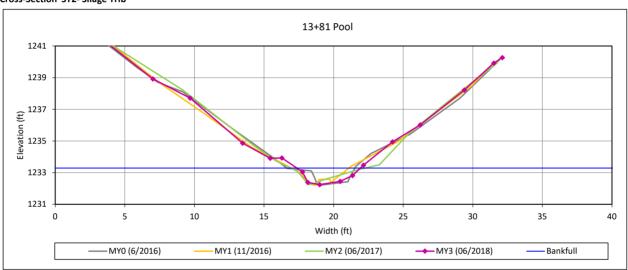
Monitoring Year 3 - 2018

Cross-Section ST1- Silage Trib

Bankfull Dimensions

- 2.8 x-section area (ft.sq.)
- 4.2 width (ft)
- 0.7 mean depth (ft)
- 0.9 max depth (ft)
- 5.0 wetted perimeter (ft)
- 0.6 hydraulic radius (ft)
- 6.2 width-depth ratio
- 10.7 W flood prone area (ft)
- 2.6 entrenchment ratio
- 1.3 low bank height ratio

Survey Date: 06/2018


View Downstream

Moores Fork Stream Mitigation Project

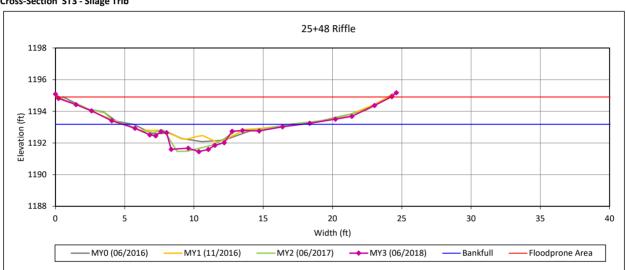
DMS Project No. 94709

Monitoring Year 3 - 2018

Cross-Section ST2- Silage Trib

Bankfull Dimensions

- 3.2 x-section area (ft.sq.)
- 4.6 width (ft)
- 0.7 mean depth (ft)
- 1.0 max depth (ft)
- wetted perimeter (ft) hydraulic radius (ft) 5.3
- 0.6
- 6.5 width-depth ratio


Survey Date: 06/2018

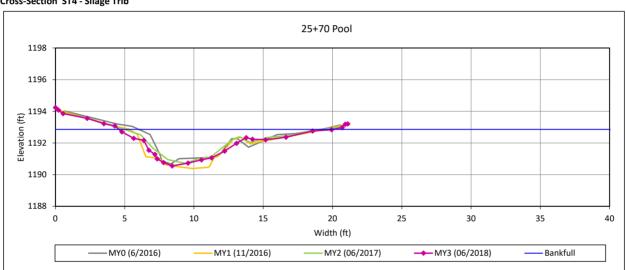
View Downstream

Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 3 - 2018

Cross-Section ST3 - Silage Trib

Bankfull Dimensions

- 9.3 x-section area (ft.sq.)
- width (ft) 12.9
- 0.7 mean depth (ft)
- 1.7 max depth (ft)
- 14.4 wetted perimeter (ft)
- hydraulic radius (ft) 0.6
- 18.0 width-depth ratio
- 24.6 W flood prone area (ft)
- 1.9 entrenchment ratio
- 0.9 low bank height ratio


Survey Date: 06/2018

View Downstream

Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 3 - 2018

Cross-Section ST4 - Silage Trib

Bankfull Dimensions

15.5 x-section area (ft.sq.)

15.3 width (ft)

1.0 mean depth (ft)

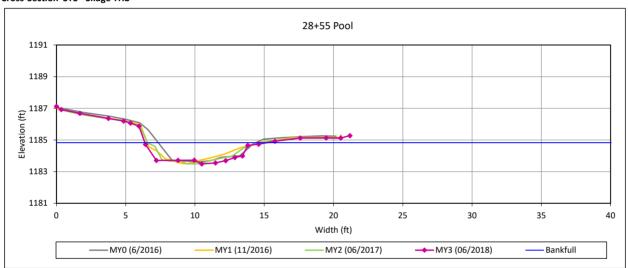
2.3 max depth (ft)

wetted perimeter (ft) hydraulic radius (ft) 16.6

0.9

15.2 width-depth ratio

Survey Date: 06/2018



View Downstream

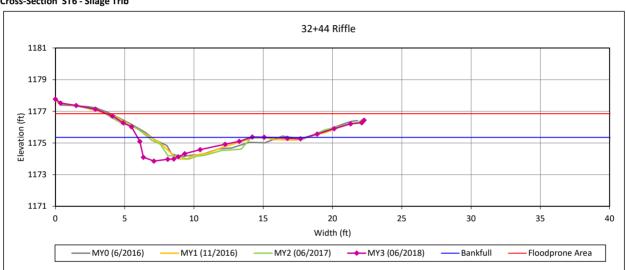
Moores Fork Stream Mitigation Project DMS Project No. 94709

Monitoring Year 3 - 2018

Cross-Section ST5 - Silage Trib

Bankfull Dimensions

- 7.9 x-section area (ft.sq.)
- 8.8 width (ft)
- 0.9 mean depth (ft)
- 1.3 max depth (ft)
- wetted perimeter (ft) hydraulic radius (ft) 9.9
- 0.8
- 9.8 width-depth ratio


Survey Date: 06/2018

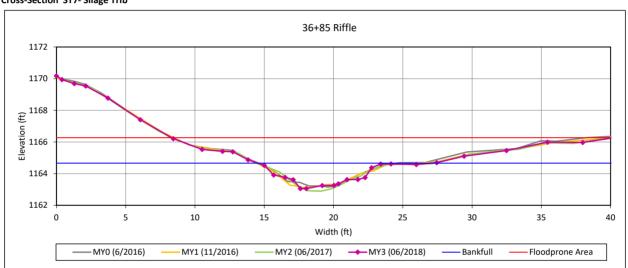
View Downstream

Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 3 - 2018

Cross-Section ST6 - Silage Trib

Bankfull Dimensions

- 6.8 x-section area (ft.sq.)
- 8.2 width (ft)
- 8.0 mean depth (ft)
- 1.5 max depth (ft)
- 9.3 wetted perimeter (ft)
- hydraulic radius (ft) 0.7
- 9.9 width-depth ratio
- 28.0 W flood prone area (ft)
- 3.4 entrenchment ratio
- 1.0 low bank height ratio


Survey Date: 06/2018

View Downstream

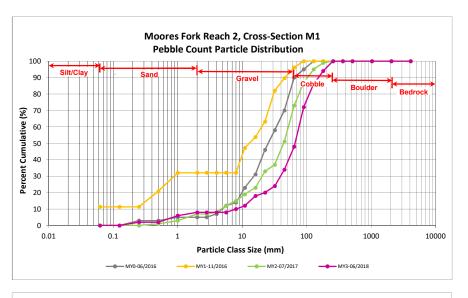
Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 3 - 2018

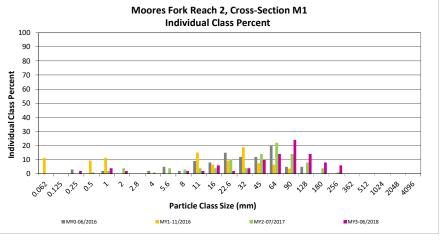
Cross-Section ST7- Silage Trib

Bankfull Dimensions

- 8.8 x-section area (ft.sq.)
- 9.6 width (ft)
- 0.9 mean depth (ft)
- 1.6 max depth (ft)
- 10.6 wetted perimeter (ft)
- 0.8 hydraulic radius (ft)
- 10.5 width-depth ratio
- 32.9 W flood prone area (ft)
- 3.4 entrenchment ratio
- 1.0 low bank height ratio

Survey Date: 06/2018

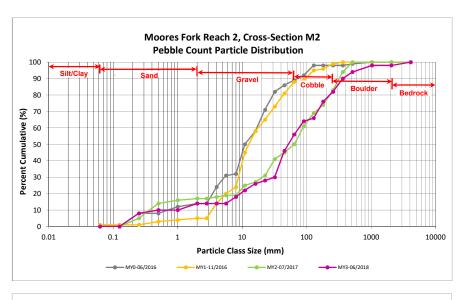

View Downstream

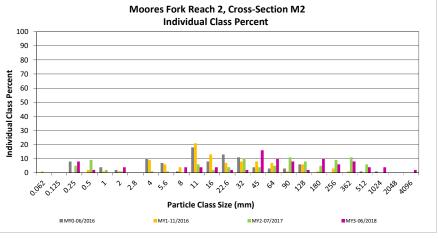

Moores Fork Stream Mitigation Project DMS Project No. 94709

Monitoring Year 3 - 2018

		Diame	ter (mm)	Riffle 100-	Sum	mary
Particle Class		min	max	Count	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
	Fine	0.125	0.250	2	2	2
SAND	Medium	0.25	0.50			2
'ל	Coarse	0.5	1.0	4	4	6
	Very Coarse	1.0	2.0	2	2	8
	Very Fine	2.0	2.8			8
	Very Fine	2.8	4.0			8
	Fine	4.0	5.6			8
	Fine	5.6	8.0	2	2	10
49.	Medium	8.0	11.0	2	2	12
GRAVEL	Medium	11.0	16.0	6	6	18
·	Coarse	16.0	22.6	2	2	20
	Coarse	22.6	32	4	4	24
	Very Coarse	32	45	10	10	34
	Very Coarse	45	64	14	14	48
	Small	64	90	24	24	72
COBBLE	Small	90	128	14	14	86
COBY.	Large	128	180	8	8	94
-	Large	180	256	6	6	100
godine e	Small	256	362			100
	Small	362	512			100
	Medium	512	1024			100
¥	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

Cross-Section M1				
Channel materials (mm)				
D ₁₆ =	14.12			
D ₃₅ =	46.15			
D ₅₀ =	65.8			
D ₈₄ =	121.7			
D ₉₅ =	190.9			
D ₁₀₀ =	256.0			

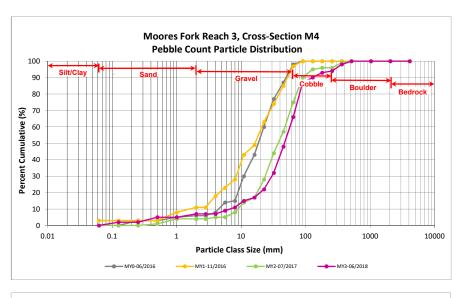


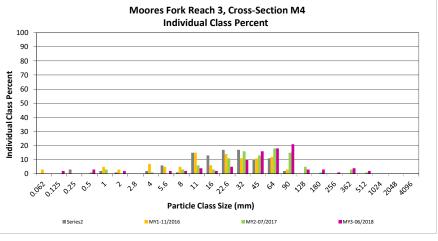

Moores Fork Stream Mitigation Project DMS Project No. 94709

Monitoring Year 3 - 2018

		Diame	ter (mm)	Riffle 100-	Summary	
Particle Class		min	max	Count	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
	Fine	0.125	0.250	8	8	8
SAND	Medium	0.25	0.50	2	2	10
יל	Coarse	0.5	1.0			10
	Very Coarse	1.0	2.0	4	4	14
	Very Fine	2.0	2.8			14
	Very Fine	2.8	4.0			14
	Fine	4.0	5.6			14
	Fine	5.6	8.0	4	4	18
.0	Medium	8.0	11.0	4	4	22
GRAVEL	Medium	11.0	16.0	4	4	26
-	Coarse	16.0	22.6	2	2	28
	Coarse	22.6	32	2	2	30
	Very Coarse	32	45	16	16	46
	Very Coarse	45	64	10	10	56
	Small	64	90	8	8	64
COBBLE	Small	90	128	2	2	66
COBR	Large	128	180	10	10	76
-	Large	180	256	6	6	82
	Small	256	362	8	8	90
RONGER	Small	362	512	4	4	94
	Medium	512	1024	4	4	98
Y	Large/Very Large	1024	2048			98
BEDROCK	Bedrock	2048	>2048	2	2	100
			Total	100	100	100

Cross-Section M2					
Ch	Channel materials (mm)				
D ₁₆ =	6.69				
D ₃₅ =	35.60				
D ₅₀ =	51.8				
D ₈₄ =	279.2				
D ₉₅ =	608.9				
D ₁₀₀ =	>2048				

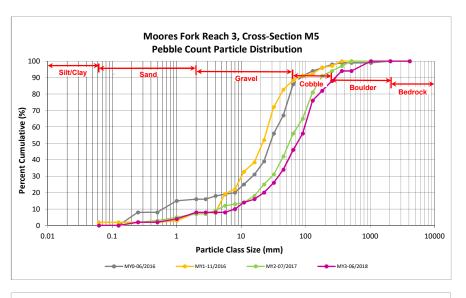


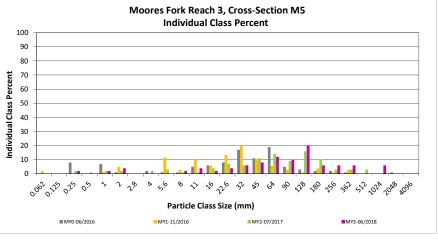

Moores Fork Stream Mitigation Project DMS Project No. 94709

Monitoring Year 3 - 2018

		Diame	ter (mm)	Riffle 100-	Sum	mary
Pai	ticle Class	min		Count	Class Percentage	Percent Cumulative
CUT/CLAY	Cilt /Cl-	0.000	max		Percentage	
SILT/CLAY	Silt/Clay		0.062		_	0
	Very fine	0.062	0.125	2	2	2
.o	Fine	0.125	0.250			2
SAND	Medium	0.25	0.50	3	3	5
•	Coarse	0.5	1.0			5
	Very Coarse	1.0	2.0	2	2	7
	Very Fine	2.0	2.8			7
	Very Fine	2.8	4.0			7
	Fine	4.0	5.6	2	2	9
	Fine	5.6	8.0	2	2	11
- 10.	Medium	8.0	11.0	4	4	15
GRAVEL	Medium	11.0	16.0	2	2	17
	Coarse	16.0	22.6	5	5	22
	Coarse	22.6	32	10	10	32
	Very Coarse	32	45	16	16	48
	Very Coarse	45	64	18	18	66
	Small	64	90	21	21	87
ale	Small	90	128	3	3	90
CORBLE	Large	128	180	3	3	93
	Large	180	256	1	1	94
	Small	256	362	4	4	98
ON OFF	Small	362	512	2	2	100
200	Medium	512	1024	•		100
*	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

Cross-Section M4					
Ch	Channel materials (mm)				
D ₁₆ =	13.27				
D ₃₅ =	34.11				
D ₅₀ =	46.8				
D ₈₄ =	85.7				
D ₉₅ =	279.2				
D ₁₀₀ =	512.0				

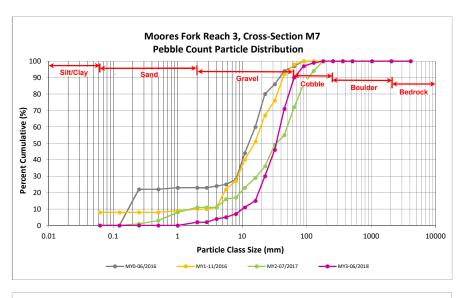


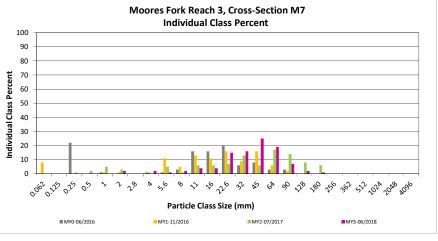

Moores Fork Stream Mitigation Project DMS Project No. 94709

Monitoring Year 3 - 2018

		Diame	ter (mm)	Riffle 100-	Sum	mary
Particle Class		min	max	Count	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
	Fine	0.125	0.250	2	2	2
SAND	Medium	0.25	0.50			2
לי	Coarse	0.5	1.0	2	2	4
	Very Coarse	1.0	2.0	4	4	8
	Very Fine	2.0	2.8			8
	Very Fine	2.8	4.0			8
	Fine	4.0	5.6			8
	Fine	5.6	8.0	2	2	10
.65	Medium	8.0	11.0	4	4	14
GRAVEL	Medium	11.0	16.0	2	2	16
	Coarse	16.0	22.6	4	4	20
	Coarse	22.6	32	6	6	26
	Very Coarse	32	45	8	8	34
	Very Coarse	45	64	12	12	46
	Small	64	90	10	10	56
al ^E	Small	90	128	20	20	76
COBBLE	Large	128	180	6	6	82
-	Large	180	256	6	6	88
	Small	256	362	6	6	94
en de	Small	362	512			94
2005	Medium	512	1024	6	6	100
¥	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

Cross-Section M5					
Ch	Channel materials (mm)				
D ₁₆ =	16.00				
D ₃₅ =	46.34				
D ₅₀ =	73.4				
D ₈₄ =	202.4				
D ₉₅ =	574.7				
D ₁₀₀ =	1024.0				

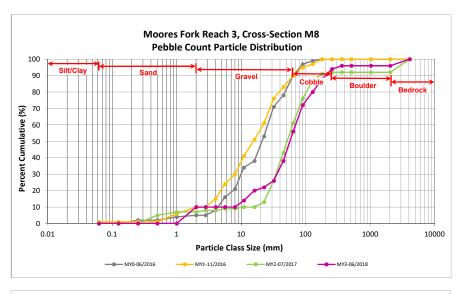


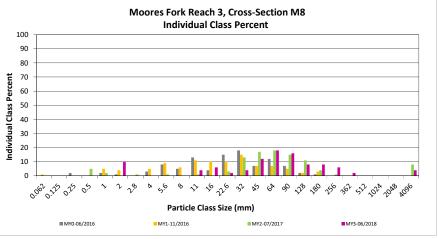

Moores Fork Stream Mitigation Project DMS Project No. 94709

Monitoring Year 3 - 2018

		Diame	ter (mm)	Riffle 100-	Sum	mary
Particle Class		min	max	Count	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
	Fine	0.125	0.250			0
SAND	Medium	0.25	0.50			0
יל	Coarse	0.5	1.0			0
	Very Coarse	1.0	2.0	2	2	2
	Very Fine	2.0	2.8			2
	Very Fine	2.8	4.0	2	2	4
	Fine	4.0	5.6	1	1	5
	Fine	5.6	8.0	2	2	7
GRAVEL	Medium	8.0	11.0	4	4	11
Chy.	Medium	11.0	16.0	4	4	15
	Coarse	16.0	22.6	15	15	30
	Coarse	22.6	32	16	16	46
	Very Coarse	32	45	25	25	71
	Very Coarse	45	64	19	19	90
	Small	64	90	7	7	97
ale	Small	90	128	2	2	99
COBBLE	Large	128	180	1	1	100
	Large	180	256			100
	Small	256	362			100
golifier.	Small	362	512			100
	Medium	512	1024	-		100
7	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

Cross-Section M7					
Ch	Channel materials (mm)				
D ₁₆ =	16.37				
D ₃₅ =	25.19				
D ₅₀ =	33.8				
D ₈₄ =	57.3				
D ₉₅ =	81.6				
D ₁₀₀ =	180.0				

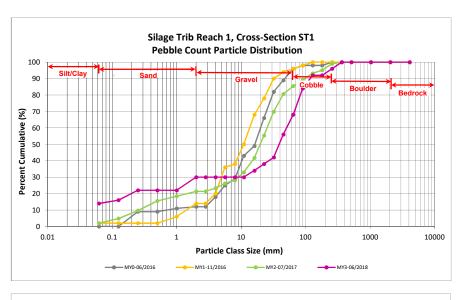


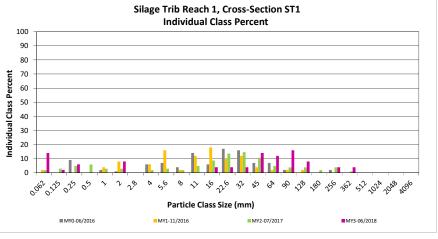

Moores Fork Stream Mitigation Project DMS Project No. 94709

Monitoring Year 3 - 2018

		Diame	ter (mm)	Riffle 100-	Sum	mary
Par	ticle Class			Count	Class	Percent
		min	max	Count	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
	Fine	0.125	0.250			0
SAND	Medium	0.25	0.50			0
2,	Coarse	0.5	1.0			0
	Very Coarse	1.0	2.0	10	10	10
	Very Fine	2.0	2.8			10
	Very Fine	2.8	4.0			10
	Fine	4.0	5.6			10
	Fine	5.6	8.0			10
167	Medium	8.0	11.0	4	4	14
GRAVEL	Medium	11.0	16.0	6	6	20
	Coarse	16.0	22.6	2	2	22
	Coarse	22.6	32	4	4	26
	Very Coarse	32	45	12	12	38
	Very Coarse	45	64	18	18	56
	Small	64	90	16	16	72
ale	Small	90	128	8	8	80
COBBLE	Large	128	180	8	8	88
	Large	180	256	6	6	94
	Small	256	362	2	2	96
, out of	Small	362	512			96
روي _	Medium	512	1024			96
	Large/Very Large	1024	2048			96
BEDROCK	Bedrock	2048	>2048	4	4	100
			Total	100	100	100

Cross-Section M8					
Ch	Channel materials (mm)				
D ₁₆ =	12.46				
D ₃₅ =	41.32				
D ₅₀ =	56.9				
D ₈₄ =	151.8				
D ₉₅ =	304.4				
D ₁₀₀ =	>2048				

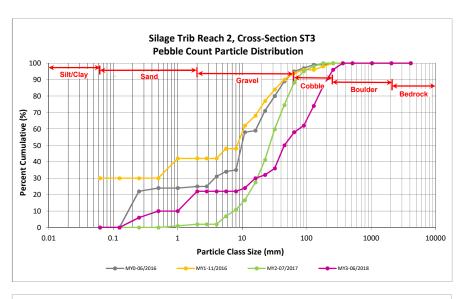

Moores Fork Stream Mitigation Project DMS Project No. 94709

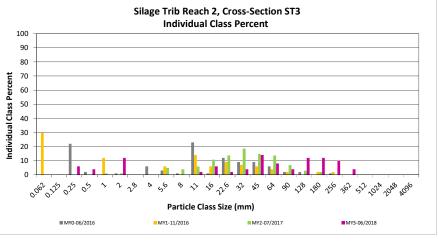

Monitoring Year 3 - 2018

Silage Trib Reach 1, Cross-Section ST1

Particle Class		Diame	ter (mm)	Riffle 100-	Summary	
		min	max	Count	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	14	14	14
	Very fine	0.062	0.125	2	2	16
	Fine	0.125	0.250	6	6	22
SAND	Medium	0.25	0.50			22
יל	Coarse	0.5	1.0			22
	Very Coarse	1.0	2.0	8	8	30
	Very Fine	2.0	2.8			30
	Very Fine	2.8	4.0			30
	Fine	4.0	5.6			30
	Fine	5.6	8.0			30
180	Medium	8.0	11.0			30
GRAVEL	Medium	11.0	16.0	4	4	34
	Coarse	16.0	22.6	4	4	38
	Coarse	22.6	32	4	4	42
	Very Coarse	32	45	14	14	56
	Very Coarse	45	64	12	12	68
	Small	64	90	16	16	84
COBBLE	Small	90	128	8	8	92
COBY	Large	128	180			92
-	Large	180	256	4	4	96
gottopic.	Small	256	362	4	4	100
	Small	362	512			100
	Medium	512	1024			100
	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

Cross-Section ST1					
Ch	Channel materials (mm)				
D ₁₆ =	0.13				
D ₃₅ =	17.44				
D ₅₀ =	38.9				
D ₈₄ =	90.0				
D ₉₅ =	234.4				
D ₁₀₀ =	362.0				

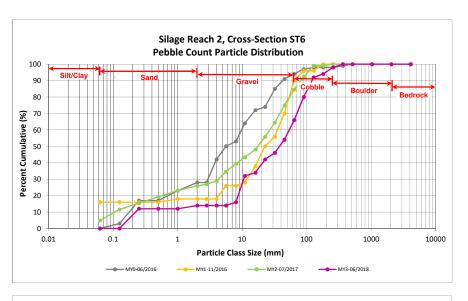

Moores Fork Stream Mitigation Project DMS Project No. 94709

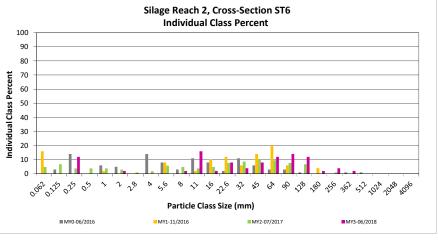

Monitoring Year 3 - 2018

Silage Trib Reach 2, Cross-Section ST3

Particle Class		Diameter (mm)		Riffle 100-	Summary	
		min	max	Count	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
	Fine	0.125	0.250	6	6	6
SAND	Medium	0.25	0.50	4	4	10
٦,	Coarse	0.5	1.0			10
	Very Coarse	1.0	2.0	12	12	22
	Very Fine	2.0	2.8			22
	Very Fine	2.8	4.0			22
	Fine	4.0	5.6			22
	Fine	5.6	8.0			22
365	Medium	8.0	11.0	2	2	24
GRAVEL	Medium	11.0	16.0	6	6	30
•	Coarse	16.0	22.6	2	2	32
	Coarse	22.6	32	4	4	36
	Very Coarse	32	45	14	14	50
	Very Coarse	45	64	8	8	58
	Small	64	90	4	4	62
COBBLE	Small	90	128	12	12	74
COBY	Large	128	180	12	12	86
	Large	180	256	10	10	96
	Small	256	362	4	4	100
gu ^{gg}	Small	362	512			100
్ట్రాస్త్రా	Medium	512	1024			100
,	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

Cross-Section ST3					
Ch	Channel materials (mm)				
D ₁₆ =	1.41				
D ₃₅ =	29.34				
D ₅₀ =	45.0				
D ₈₄ =	170.1				
D ₉₅ =	247.1				
D ₁₀₀ =	362.0				


Moores Fork Stream Mitigation Project DMS Project No. 94709

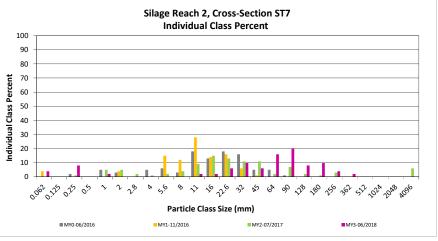

Monitoring Year 3 - 2018

Silage Reach 2, Cross-Section ST6

Particle Class		Diame	ter (mm)	Riffle 100-	Sum	Summary	
		min	max	Count	Class Percentage	Percent Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062			0	
	Very fine	0.062	0.125			0	
	Fine	0.125	0.250	12	12	12	
SAND	Medium	0.25	0.50			12	
יל	Coarse	0.5	1.0			12	
	Very Coarse	1.0	2.0	2	2	14	
	Very Fine	2.0	2.8			14	
	Very Fine	2.8	4.0			14	
	Fine	4.0	5.6			14	
	Fine	5.6	8.0	2	2	16	
- 10.	Medium	8.0	11.0	16	16	32	
GRAVEL	Medium	11.0	16.0	2	2	34	
· ·	Coarse	16.0	22.6	8	8	42	
	Coarse	22.6	32	4	4	46	
	Very Coarse	32	45	8	8	54	
	Very Coarse	45	64	12	12	66	
	Small	64	90	14	14	80	
COBBLE	Small	90	128	12	12	92	
OBV	Large	128	180	2	2	94	
-	Large	180	256	4	4	98	
gottopic.	Small	256	362	2	2	100	
	Small	362	512			100	
	Medium	512	1024			100	
	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	100	100	100	

Cross-Section ST6					
Ch	Channel materials (mm)				
D ₁₆ =	8.00				
D ₃₅ =	16.71				
D ₅₀ =	37.9				
D ₈₄ =	101.2				
D ₉₅ =	196.6				
D ₁₀₀ =	362.0				

Moores Fork Stream Mitigation Project DMS Project No. 94709


Monitoring Year 3 - 2018

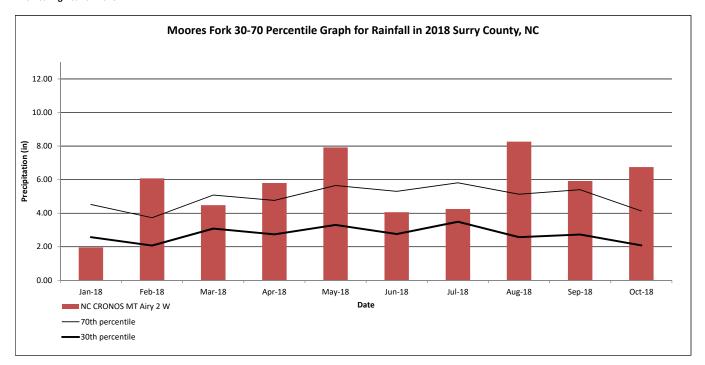
Silage Reach 2, Cross-Section ST7

Particle Class		Diame	ter (mm)	Riffle 100-	Summary	
		min	max	Count	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	4	4	4
	Very fine	0.062	0.125			4
	Fine	0.125	0.250	8	8	12
SAND	Medium	0.25	0.50			12
יל	Coarse	0.5	1.0	2	2	14
	Very Coarse	1.0	2.0			14
	Very Fine	2.0	2.8			14
	Very Fine	2.8	4.0			14
	Fine	4.0	5.6			14
	Fine	5.6	8.0			14
.65	Medium	8.0	11.0	2	2	16
GRAVEL	Medium	11.0	16.0	2	2	18
·	Coarse	16.0	22.6	6	6	24
	Coarse	22.6	32	10	10	34
	Very Coarse	32	45	6	6	40
	Very Coarse	45	64	16	16	56
	Small	64	90	20	20	76
COBBLE	Small	90	128	8	8	84
COBP	Large	128	180	10	10	94
·	Large	180	256	4	4	98
BOHISER	Small	256	362	2	2	100
	Small	362	512			100
	Medium	512	1024			100
	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

Cross-Section ST7					
Ch	Channel materials (mm)				
D ₁₆ =	11.00				
D ₃₅ =	33.87				
D ₅₀ =	56.1				
D ₈₄ =	128.0				
D ₉₅ =	196.6				
D ₁₀₀ =	362.0				

Table 13. Verification of Bankfull Events

Moores Fork Stream Mitigation Project DMS Project No.94709


Monitoring Year 3 - 2018

Reach	Monitoring Year	Date of Data Collection	Date of Occurrence	Method	Measurement (ft)
	MY1	10/25/2016	~8/4/2016	Crest Gage	1.30
Moores Fork Reach 2	MY2	7/10/2017	~5/25/2017	Crest Gage	2.55
	MY3	4/12/2018	~3/25/2018	Crest Gage	2.73
Silage Reach 2	MY1	10/25/2016	~8/4/2016	Crest Gage	0.75
Slidge RedCli 2	MY3	4/12/2018	~3/25/2018	Debris wracklines	N/A

Monthly Rainfall Data

Moores Fork Stream Mitigation Project DMS Project No.94709

Monitoring Year 3 - 2018

 $^{^{\}rm 1}$ 2018 rainfall collected from NC CRONOS Station Name: MT AIRY 2 W (NCSU, 2018)

 $^{^{\}rm 2}$ 30th and 70th percentile rainfall data collected from weather station MT AIRY 2 W, NC (USDA, 2018)

MEMO

To: Matthew Reid, NCDEQ

From: Joe Secoges

Date: 09/08/2018

Subject: Moore's Fork Mitigation Site Maintenance Report

For reporting purposes, Eastern Forest Consultants produced a map delineating five management units. The units are labeled A through E on a map attached to the memo to help describe tasks performed in various areas of the property.

Tasks Preformed:

• Management Area A- July 5th, 6th, and 11th was spent spraying in Management Area A. Invasive species found in the management area include Japanese honeysuckle, kudzu, Chinese privet, multi-flora rose and oriental bittersweet. There were large amounts of honeysuckle sprayed in the cove area on the south side, along with a small area of kudzu. Chinese privet was scattered throughout all of the area, some spots being denser with the species than others. The herbicide used to spray all species, except kudzu, was Rodeo. Rodeo was used at a rate of 5oz per gallon. The kudzu was controlled with Transline at an approximate rate of 10 oz per acre (half the amount allowed on a site in one year).

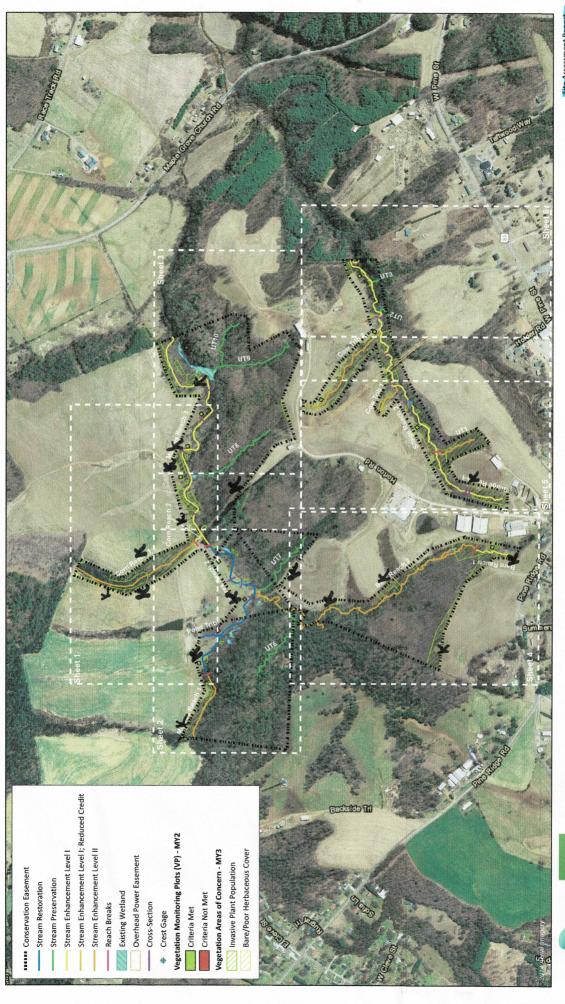
On August 24th, Area A was treated again. The honeysuckle, privet, rose, and bittersweet were treated using a mix of 4 oz Rodeo and 2 oz Vastlan per gallon of water. Kudzu was treated again using Transline at an approximate rate of 10 oz per acre.

• Management Area B- July 10th and 11th was spent treating Management Area B. Invasive species found in the area include Japanese honeysuckle, kudzu, Chinese privet, multi-flora rose and oriental bittersweet. Honeysuckle and bittersweet had a well-established presence in the area. There was also a small patch of kudzu that was starting to work its way back into the forested area. Rodeo was used at a rate of 5oz per gallon. The kudzu was controlled with Transline at an approximate rate of 10 oz per acre. Several ailanthus and paulownia trees were treated via hack and squirt.

On August 24^{th,} and 27th and September 3rd and 5th, Area B was treated again. The honeysuckle, privet, rose, and bittersweet were treated using a mix of 4 oz Rodeo and 2 oz Vastlan per gallon of water. Kudzu was treated again using Transline at an approximate rate of 10 oz per acre.

• Management Area C- Management Area C was treated on July 11th and 12th. Invasive species found in the management area include Japanese honeysuckle, kudzu, Chinese privet, multi-flora rose and oriental bittersweet. The area was not heavily populated with invasive species. The south side of the stream was more heavily populated, but was still

Vendor:	
A GIIOOI '	


MEASUREMENT AND PAYMENT

The invasive vegetation treatment will be paid per the Payments and Milestones Schedule listed in Section 4.6 of this RFQ. VENDOR must follow the PAYMENT & INVOICING PROCEDURES listed in Section 4.7 to avoid delays in payments.

Page 24 of 24

Kudzu Locations 2018

Integrated Current Condition Plan View (Key)
Moores Fork Stream Mitigation Project
DMS Project No. 94709
Monitoring Year 3 - 2018 Surry County, NC

600 Feet

300

sporadic. Rodeo was used at a rate of 5oz per gallon. The kudzu was controlled with Transline at an approximate rate of 10 oz per acre.

On August 27th and September 5th, Area C was treated again. The honeysuckle, privet, rose, and bittersweet were treated using a mix of 4 oz Rodeo and 2 oz Vastlan per gallon of water. Kudzu was treated again using Transline at an approximate rate of 10 oz per acre.

• Management Area D- Management Area D was treated on July 11th and 12th. Invasive species found in the management area include Japanese honeysuckle, kudzu, Chinese privet, multi-flora rose and oriental bittersweet. Invasive species populations in this area were sporadic but dense when found. Rodeo was used at a rate of 5oz per gallon. The kudzu was controlled with Transline at an approximate rate of 10 oz per acre. Some ailanthus trees were flagged to be hacked and squirted on the next application.

On August 24th and 27th, Area D was treated again. The honeysuckle, privet, rose, and bittersweet were treated using a mix of 4 oz Rodeo and 2 oz Vastlan per gallon of water. Kudzu was treated again using Transline at an approximate rate of 10 oz per acre.

• Management Area E- Management Area E was treated on the afternoon of July 10th and 12th. Invasive species found in the management area include Japanese honeysuckle, kudzu, Chinese privet, multi-flora rose and Oriental bittersweet. The area was dense in honeysuckle, and bittersweet and had some dense areas of kudzu on the outer edges. Rodeo was used at a rate of 5oz per gallon. The kudzu was controlled with Transline at an approximate rate of 10 oz per acre.

On August 27th and September 5th, Area E was treated again. The honeysuckle, privet, rose, and bittersweet were treated using a mix of 4 oz Rodeo and 2 oz Vastlan per gallon of water. Kudzu was treated again using Transline at an approximate rate of 10 oz per acre.

Other Notable Information:

- Kudzu was found to be more abundant than originally noted on the site assessment report. A map is attached to this memo noting the kudzu that was located and treated in the field.
- On the second round of control (late August early September) extra care was taken when treating kudzu along the field edges, especially in Blocks B and E, because corn and/or sorghum was planted nearby.

PESTICIDE/HERBICIDE APPLICATION RECORD

PROPERTY OWNER/MANAGER:

Name: Matthew Reid

NC DEQ DMS

Address: 5 Ravenscroft Drive, Suite 102

Asheville, NC 28801

Telephone #: 828-231-7912

ADDRESS/LOCATION OF APPLICATION SITE (if different than above):

Address/Location: Moore's Fork Mitigation Site – Surry County

CERTIFIED APPLICATOR:

Joseph M. Secoges (Applicator Cert. # 026-34911 / Consultant Cert. # 030-1312) Eastern Forest Consultants LLC P.O. Box 1577 Clemmons, NC 27012 240-446-1583

DATE + START/END TIME OF APPLICATION: 7/5/2018; 1000-1630

RESTRICTED ENTRY INTERVAL (REI):

DURATION (# OF HOURS): 4 Hours

EXPIRATION (DATE/TIME): 7/5/18 @ 2030

PLANTS/SITES TREATED: Upland Area around Stream

PRINCIPLE PESTS TO BE CONTROLLED: Privet, Honeysuckle, Bittersweet,

Multi-flora Rose

ACREAGE, AREA, OR NUMBER OF PLANTS TREATED:

Spot Spray As Needed

IDENTIFICATION/AMOUNT OF PESTICIDES USED:

1) Brand/Common Name: Rodeo
EPA Reg. Number: 62719-324
Amount Applied to Site: 165 oz
Application Rate: 5 oz/gallon

2) Brand/Common Name: CWC 90 Surfactant

EPA Reg. Number: N/A
Amount Applied to Site: 33 oz

Application Rate: 1 oz / gallon

3) Brand/Common Name: Bullseye Spray Pattern Indicator

EPA Reg. Number: N/A Amount Applied to Site: 33 oz

Application Rate: 1 oz / gallon

4) Brand/Common Name: EPA Reg. Number:

Amount Applied to Site:

Application Rate:

DILUENTS USED (Water, Oil, Fuel, etc.):

1) Diluent: Water
Amount Applied to Site: 33 gallons
Application Rate: As Needed

2) Diluent:

Amount Applied to Site:

Application Rate:

TYPE OF APPLICATION EQUIPMENT USED: Back-pack Sprayers

WEATHER:

90-95 deg F Temp:

Wind Speed: 0-5 mph

Wind Direction: variable

Sprayed with Preston Millsaps and John Smith Treated "Block A" on SE side of property NOTES:

PESTICIDE/HERBICIDE APPLICATION RECORD

PROPERTY OWNER/MANAGER:

Name: Matthew Reid

NC DEQ DMS

Address: 5 Ravenscroft Drive, Suite 102

Asheville, NC 28801

Telephone #: 828-231-7912

ADDRESS/LOCATION OF APPLICATION SITE (if different than above):

Address/Location: Moore's Fork Mitigation Site – Surry County

CERTIFIED APPLICATOR:

Joseph M. Secoges (Applicator Cert. # 026-34911 / Consultant Cert. # 030-1312) Eastern Forest Consultants LLC P.O. Box 1577 Clemmons, NC 27012 240-446-1583

DATE + START/END TIME OF APPLICATION: 7/6/2018; 0930-1200

RESTRICTED ENTRY INTERVAL (REI):

DURATION (# OF HOURS): 4 Hours

EXPIRATION (DATE/TIME): 7/6/18 @ 1600

PLANTS/SITES TREATED: Upland Area around Stream

PRINCIPLE PESTS TO BE CONTROLLED: Privet, Honeysuckle, Bittersweet,

Multi-flora Rose

ACREAGE, AREA, OR NUMBER OF PLANTS TREATED:

Spot Spray As Needed

IDENTIFICATION/AMOUNT OF PESTICIDES USED:

1) Brand/Common Name: Rodeo
EPA Reg. Number: 62719-324
Amount Applied to Site: 60 oz
Application Rate: 5 oz/gallon

2) Brand/Common Name: CWC 90 Surfactant

EPA Reg. Number: N/A
Amount Applied to Site: 12 oz

Application Rate: 1 oz / gallon

3) Brand/Common Name: Bullseye Spray Pattern Indicator

EPA Reg. Number: N/A
Amount Applied to Site: 12 oz

Application Rate: 1 oz / gallon

4) Brand/Common Name: EPA Reg. Number: Amount Applied to Site:

Application Rate:

DILUENTS USED (Water, Oil, Fuel, etc.):

1) Diluent: Water
Amount Applied to Site: 12 gallons
Application Rate: As Needed

2) Diluent:

Amount Applied to Site: Application Rate:

TYPE OF APPLICATION EQUIPMENT USED: Back-pack Sprayers

WEATHER:

Temp: 85-95 deg F

Wind Speed: 0-5 mph

Wind Direction: variable

NOTES: Sprayed with Preston Millsaps and John Smith

Treated northern end of "Block A" on SE side of property

Heavy rain storm came in about an hour after we finished spraying...no

spraying after rain event

PESTICIDE/HERBICIDE APPLICATION RECORD

PROPERTY OWNER/MANAGER:

Name: Matthew Reid

NC DEQ DMS

Address: 5 Ravenscroft Drive, Suite 102

Asheville, NC 28801

Telephone #: 828-231-7912

ADDRESS/LOCATION OF APPLICATION SITE (if different than above):

Address/Location: Moore's Fork Mitigation Site – Surry County

CERTIFIED APPLICATOR:

Joseph M. Secoges (Applicator Cert. # 026-34911 / Consultant Cert. # 030-1312) Eastern Forest Consultants LLC P.O. Box 1577 Clemmons, NC 27012 240-446-1583

DATE + START/END TIME OF APPLICATION: 7/10/2018; 0930-1600

RESTRICTED ENTRY INTERVAL (REI):

DURATION (# OF HOURS): 4 Hours

EXPIRATION (DATE/TIME): 7/10/18 @ 2000

PLANTS/SITES TREATED: Upland Area around Stream

PRINCIPLE PESTS TO BE CONTROLLED: Privet, Honeysuckle, Bittersweet,

Multi-flora Rose

ACREAGE, AREA, OR NUMBER OF PLANTS TREATED:

Spot Spray As Needed

IDENTIFICATION/AMOUNT OF PESTICIDES USED:

1) Brand/Common Name: Rodeo
EPA Reg. Number: 62719-324
Amount Applied to Site: 255 oz
Application Rate: 5 oz/gallon

2) Brand/Common Name: CWC 90 Surfactant

EPA Reg. Number: N/A
Amount Applied to Site: 51 oz

Application Rate: 1 oz / gallon

3) Brand/Common Name: Bullseye Spray Pattern Indicator

EPA Reg. Number: N/A
Amount Applied to Site: 51 oz

Application Rate: 1 oz / gallon

4) Brand/Common Name: EPA Reg. Number:

Amount Applied to Site:

Application Rate:

DILUENTS USED (Water, Oil, Fuel, etc.):

1) Diluent: Water
Amount Applied to Site: 51 gallons
Application Rate: As Needed

2) Diluent:

Amount Applied to Site:

Application Rate:

TYPE OF APPLICATION EQUIPMENT USED: Back-pack Sprayers

WEATHER:

85-95 deg F Temp:

Wind Speed: 0-5 mph

Wind Direction: variable

Sprayed with Preston Millsaps and John Smith Treated blocks "B" and "E" NOTES:

PESTICIDE/HERBICIDE APPLICATION RECORD

PROPERTY OWNER/MANAGER:

Name: Matthew Reid

NC DEQ DMS

Address: 5 Ravenscroft Drive, Suite 102

Asheville, NC 28801

Telephone #: 828-231-7912

ADDRESS/LOCATION OF APPLICATION SITE (if different than above):

Address/Location: Moore's Fork Mitigation Site – Surry County

CERTIFIED APPLICATOR:

Joseph M. Secoges (Applicator Cert. # 026-34911 / Consultant Cert. # 030-1312) Eastern Forest Consultants LLC P.O. Box 1577 Clemmons, NC 27012 240-446-1583

DATE + START/END TIME OF APPLICATION: 7/11/2018; 0930-1430

RESTRICTED ENTRY INTERVAL (REI):

DURATION (# OF HOURS): 12 Hours

EXPIRATION (DATE/TIME): 7/12/18 @ 0230

PLANTS/SITES TREATED: Upland Area around Stream

PRINCIPLE PESTS TO BE CONTROLLED: Kudzu

ACREAGE, AREA, OR NUMBER OF PLANTS TREATED:

Spot Spray As Needed

IDENTIFICATION/AMOUNT OF PESTICIDES USED:

1) Brand/Common Name: Transline EPA Reg. Number: 62719-259 Amount Applied to Site: 20 oz

Application Rate: 8 oz / 12 gallons

2) Brand/Common Name: CWC 90 Surfactant

EPA Reg. Number: N/A
Amount Applied to Site: 30 oz

Application Rate: 1 oz / gallon

3) Brand/Common Name: Bullseye Spray Pattern Indicator

EPA Reg. Number: N/A
Amount Applied to Site: 30 oz

Application Rate: 1 oz / gallon

4) Brand/Common Name: EPA Reg. Number: Amount Applied to Site:

Application Rate:

DILUENTS USED (Water, Oil, Fuel, etc.):

1) Diluent: Water
Amount Applied to Site: 30 gallons
Application Rate: As Needed

2) Diluent:

Amount Applied to Site:

Application Rate:

TYPE OF APPLICATION EQUIPMENT USED: Back-pack Sprayers

Temp: 85-95 deg F

Wind Speed: 0-5 mph

Wind Direction: variable

NOTES: Sprayed with John Smith

Treated all known kudzu in blocks A and B, Some in C and D Rain Storm started about 35 minutes after we stopped spraying

PROPERTY OWNER/MANAGER:

Name: Matthew Reid

NC DEQ DMS

Address: 5 Ravenscroft Drive, Suite 102

Asheville, NC 28801

Telephone #: 828-231-7912

ADDRESS/LOCATION OF APPLICATION SITE (if different than above):

Address/Location: Moore's Fork Mitigation Site – Surry County

CERTIFIED APPLICATOR:

Joseph M. Secoges (Applicator Cert. # 026-34911 / Consultant Cert. # 030-1312) Eastern Forest Consultants LLC P.O. Box 1577 Clemmons, NC 27012 240-446-1583

DATE + START/END TIME OF APPLICATION: 7/12/2018; 0930-1600

RESTRICTED ENTRY INTERVAL (REI):

DURATION (# OF HOURS): 12 Hours

EXPIRATION (DATE/TIME): 7/13/18 @ 0600

PLANTS/SITES TREATED: Upland Area around Stream

PRINCIPLE PESTS TO BE CONTROLLED: Kudzu, Privet, Bittersweet, Rose,

Honeysuckle

Spot Spray As Needed

IDENTIFICATION/AMOUNT OF PESTICIDES USED:

1) Brand/Common Name: Transline EPA Reg. Number: 62719-259 Amount Applied to Site: 18 oz

Application Rate: 12 oz / 12 gallons

2) Brand/Common Name: Rodeo EPA Reg. Number: 62719-324 Amount Applied to Site: 90 oz

Application Rate: 5 oz / gallon

2) Brand/Common Name: CWC 90 Surfactant

EPA Reg. Number: N/A
Amount Applied to Site: 36 oz

Application Rate: 1 oz / gallon

3) Brand/Common Name: Bullseye Spray Pattern Indicator

EPA Reg. Number: N/A
Amount Applied to Site: 36 oz

Application Rate: 1 oz / gallon

DILUENTS USED (Water, Oil, Fuel, etc.):

1) Diluent: Water
Amount Applied to Site: 36 gallons
Application Rate: As Needed

2) Diluent:

Amount Applied to Site: Application Rate:

TYPE OF APPLICATION EQUIPMENT USED: Back-pack Sprayers

Temp: 80-90 deg F

Wind Speed: 0-10 mph

Wind Direction: variable

NOTES: Sprayed with Preston Millsaps John Smith

Treated all known kudzu in blocks C, D, and E

Joe sprayed kudzu with Transline and Preston and John sprayed other

invasive spp. with Rodeo

PROPERTY OWNER/MANAGER:

Name: Matthew Reid

NC DEQ DMS

Address: 5 Ravenscroft Drive, Suite 102

Asheville, NC 28801

Telephone #: 828-231-7912

ADDRESS/LOCATION OF APPLICATION SITE (if different than above):

Address/Location: Moore's Fork Mitigation Site – Surry County

CERTIFIED APPLICATOR:

Joseph M. Secoges (Applicator Cert. # 026-34911 / Consultant Cert. # 030-1312) Eastern Forest Consultants LLC P.O. Box 1577 Clemmons, NC 27012 240-446-1583

DATE + START/END TIME OF APPLICATION: 8/24/2018; 0800-1600

RESTRICTED ENTRY INTERVAL (REI):

DURATION (# OF HOURS): 24 Hours

EXPIRATION (DATE/TIME): 8/25/18 @ 1600

PLANTS/SITES TREATED: Upland Area around Stream

PRINCIPLE PESTS TO BE CONTROLLED: Kudzu, Privet, Bittersweet, Rose,

Honeysuckle

Spot Spray As Needed

IDENTIFICATION/AMOUNT OF PESTICIDES USED:

1) Brand/Common Name: Transline EPA Reg. Number: 62719-259 Amount Applied to Site: 45.5 oz

Application Rate: 21 oz / 12 gallons

2) Brand/Common Name: Vastlan EPA Reg. Number: 62719-687 Amount Applied to Site: 30 oz

Application Rate: 4 oz / gallon

3) Brand/Common Name: Rodeo EPA Reg. Number: 62719-324 Amount Applied to Site: 60 oz

Application Rate: 5 oz / gallon

4) Brand/Common Name: CWC 90 Surfactant

EPA Reg. Number: N/A
Amount Applied to Site: 38 oz

Application Rate: 1 oz / gallon

5) Brand/Common Name: Bullseye Spray Pattern Indicator

EPA Reg. Number: N/A
Amount Applied to Site: 38 oz

Application Rate: 1 oz / gallon

DILUENTS USED (Water, Oil, Fuel, etc.):

1) Diluent: Water
Amount Applied to Site: 38 gallons
Application Rate: As Needed

2) Diluent:

Amount Applied to Site:

Application Rate:

TYPE OF APPLICATION EQUIPMENT USED: Back-pack Sprayers

Temp: 80-90 deg F

Wind Speed: 0-10 mph

Wind Direction: variable

NOTES: Sprayed with Preston Millsaps

Joe treated kudzu in block A, south side of block B and block D; Preston

treated various invasives in block A.

Joe sprayed kudzu with Transline and Preston sprayed other

invasive spp. with Rodeo and Vastlan

PROPERTY OWNER/MANAGER:

Name: Matthew Reid

NC DEQ DMS

Address: 5 Ravenscroft Drive, Suite 102

Asheville, NC 28801

Telephone #: 828-231-7912

ADDRESS/LOCATION OF APPLICATION SITE (if different than above):

Address/Location: Moore's Fork Mitigation Site – Surry County

CERTIFIED APPLICATOR:

Preston Millsaps (Applicator Cert. # 026-36367) Eastern Forest Consultants LLC P.O. Box 1577 Clemmons, NC 27012 240-446-1583

DATE + START/END TIME OF APPLICATION: 8/27/2018; 0830-1700

RESTRICTED ENTRY INTERVAL (REI):

DURATION (# OF HOURS): 24 Hours

EXPIRATION (DATE/TIME): 8/28/18 @ 1700

PLANTS/SITES TREATED: Upland Area around Stream

PRINCIPLE PESTS TO BE CONTROLLED: Privet, Bittersweet, Rose,

Honeysuckle

Spot Spray As Needed

IDENTIFICATION/AMOUNT OF PESTICIDES USED:

1) Brand/Common Name: Vastlan EPA Reg. Number: 62719-687 Amount Applied to Site: 42 oz

Application Rate: 4 oz / gallon

2) Brand/Common Name: Rodeo EPA Reg. Number: 62719-324 Amount Applied to Site: 84 oz

Application Rate: 5 oz / gallon

3) Brand/Common Name: CWC 90 Surfactant

EPA Reg. Number: N/A
Amount Applied to Site: 21 oz

Application Rate: 1 oz / gallon

4) Brand/Common Name: Bullseye Spray Pattern Indicator

EPA Reg. Number: N/A
Amount Applied to Site: 21 oz

Application Rate: 1 oz / gallon

DILUENTS USED (Water, Oil, Fuel, etc.):

1) Diluent: Water
Amount Applied to Site: 21 gallons
Application Rate: As Needed

2) Diluent:

Amount Applied to Site: Application Rate:

TYPE OF APPLICATION EQUIPMENT USED: Back-pack Sprayer

Temp: Approx. 90 deg F

Wind Speed: 0-10 mph

Wind Direction: variable

NOTES:

Sprayed on blocks C, D, and E and the southern portion of block B

PROPERTY OWNER/MANAGER:

Name: Matthew Reid

NC DEQ DMS

Address: 5 Ravenscroft Drive, Suite 102

Asheville, NC 28801

Telephone #: 828-231-7912

ADDRESS/LOCATION OF APPLICATION SITE (if different than above):

Address/Location: Moore's Fork Mitigation Site – Surry County

CERTIFIED APPLICATOR:

Preston Millsaps (Applicator Cert. # 026-36367) Eastern Forest Consultants LLC P.O. Box 1577 Clemmons, NC 27012 336-466-4008

DATE + START/END TIME OF APPLICATION:

9/3/2018: 0815-1700

RESTRICTED ENTRY INTERVAL (REI):

DURATION (# OF HOURS): 24 hours

EXPIRATION (DATE/TIME): 9/4/2018 @ 1700

PLANTS/SITES TREATED:

Sites treated were hill tops, side slopes, and bottomlands

PRINCIPLE PESTS TO BE CONTROLLED:

Privet, bittersweet, honeysuckle, paulownia, ailanthus

Spot sprayed as needed

IDENTIFICATION/AMOUNT OF PESTICIDES USED:

11) Brand/Common Name: Vastlan EPA Reg. Number: 62719-687 Amount Applied to Site: 36 oz

Application Rate: 2 oz/Gallon

2) Brand/Common Name: Rodeo
EPA Reg. Number: 62719-324
Amount Applied to Site: 72 oz
Application Rate: 4 oz/Gallon

3) Brand/Common Name: Spreader 90 Surfactant

EPA Reg. Number: N/A
Amount Applied to Site: 18 oz

Application Rate: 1 oz /gallon

4) Brand/Common Name: Bullseye Dye

EPA Reg. Number: N/A
Amount Applied to Site: 18 oz

Application Rate: 1 oz/gallon

DILUENTS USED (Water, Oil, Fuel, etc.):

1) Diluent: Water
Amount Applied to Site: 18 gallons
Application Rate: As Needed

2) Diluent:

Amount Applied to Site: Application Rate:

TYPE OF APPLICATION EQUIPMENT USED:

Backpack sprayer

Temp: 85-90 deg F

Wind Speed: 0-5 mph

Wind Direction: variable

NOTES:

There was a shower around 1530.

PROPERTY OWNER/MANAGER:

Name: Matthew Reid

NC DEQ DMS

Address: 5 Ravenscroft Drive, Suite 102

Asheville, NC 28801

Telephone #: 828-231-7912

ADDRESS/LOCATION OF APPLICATION SITE (if different than above):

Address/Location: Moore's Fork Mitigation Site – Surry County

CERTIFIED APPLICATOR:

Joseph M. Secoges (Applicator Cert. # 026-34911 / Consultant Cert. # 030-1312) Eastern Forest Consultants LLC P.O. Box 1577 Clemmons, NC 27012 240-446-1583

DATE + START/END TIME OF APPLICATION: 9/5/2018; 0900-1515

RESTRICTED ENTRY INTERVAL (REI):

DURATION (# OF HOURS): 12 Hours

EXPIRATION (DATE/TIME): 9/6/18 @ 0315

PLANTS/SITES TREATED: Upland Area around Stream

PRINCIPLE PESTS TO BE CONTROLLED: Kudzu

Spot Spray As Needed

IDENTIFICATION/AMOUNT OF PESTICIDES USED:

1) Brand/Common Name: Transline EPA Reg. Number: 62719-259 Amount Applied to Site: 42 oz

Application Rate: 21 oz / 12 gallons

2) Brand/Common Name: CWC 90 Surfactant

EPA Reg. Number: N/A
Amount Applied to Site: 24 oz

Application Rate: 1 oz / gallon

3) Brand/Common Name: Bullseye Spray Pattern Indicator

EPA Reg. Number: N/A
Amount Applied to Site: 24 oz

Application Rate: 1 oz / gallon

4) Brand/Common Name: EPA Reg. Number:

Amount Applied to Site:

Application Rate:

DILUENTS USED (Water, Oil, Fuel, etc.):

1) Diluent: Water
Amount Applied to Site: 24 gallons
Application Rate: As Needed

2) Diluent:

Amount Applied to Site:

Application Rate:

TYPE OF APPLICATION EQUIPMENT USED: Back-pack Sprayers

Temp: 85-95 deg F

Wind Speed: 0-10 mph

Wind Direction: variable

NOTES: Treated all known kudzu in northern portion of Block B, all of C, and all

of E

Wind was still in morning when spraying kudzu near corn and sorghum